中文版 | English
题名

Classification of cracking sources of different engineering media via machine learning

作者
通讯作者Song,Zhenlong
发表日期
2021
DOI
发表期刊
ISSN
8756-758X
EISSN
1460-2695
卷号44页码:2475-2488
摘要

Complex civil structures require the cooperation of many building materials. However, it is difficult to accurately monitor and evaluate the inner damage states of various material systems. Based on a convolutional neural network (CNN) and the acoustic emission (AE) time-frequency diagram, we used the transfer learning method for classifying the AE signals of different materials under external loads. The results show the CNN model can accurately classify cracks that come from different materials based on AE signals. The recognition accuracy can reach 90% just by retraining the full connection layer of the pretrained model, and its accuracy can reach 97% after retraining the top 2 convolutional layers of this model. A realization of cracking source identification mainly depends on the differences in mineral particles in materials. This work highlights the great potential for real-time and quantitative monitoring of the health status of composite civil structures.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
WOS记录号
WOS:000663870100001
EI入藏号
20212510541518
EI主题词
Acoustic emission testing ; Composite structures ; Convolution ; Convolutional neural networks ; Structural health monitoring ; Transfer learning
EI分类号
Structural Members and Shapes:408.2 ; Strength of Building Materials; Test Equipment and Methods:422 ; Information Theory and Signal Processing:716.1 ; Acoustic Properties of Materials:751.2
ESI学科分类
MATERIALS SCIENCE
Scopus记录号
2-s2.0-85108299882
来源库
Scopus
引用统计
被引频次[WOS]:12
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/242290
专题理学院_地球与空间科学系
作者单位
1.State Key Laboratory of Coal Mine Disaster Dynamics and Control,Chongqing University,Chongqing,China
2.Department of Earth and Space Sciences,Southern University of Science and Technology,Shenzhen,China
通讯作者单位地球与空间科学系
推荐引用方式
GB/T 7714
Huang,Jie,Hu,Qianting,Song,Zhenlong,et al. Classification of cracking sources of different engineering media via machine learning[J]. FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES,2021,44:2475-2488.
APA
Huang,Jie.,Hu,Qianting.,Song,Zhenlong.,Zhang,Gongheng.,Qin,Chao Zhong.,...&Wang,Xiaodong.(2021).Classification of cracking sources of different engineering media via machine learning.FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES,44,2475-2488.
MLA
Huang,Jie,et al."Classification of cracking sources of different engineering media via machine learning".FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES 44(2021):2475-2488.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang,Jie]的文章
[Hu,Qianting]的文章
[Song,Zhenlong]的文章
百度学术
百度学术中相似的文章
[Huang,Jie]的文章
[Hu,Qianting]的文章
[Song,Zhenlong]的文章
必应学术
必应学术中相似的文章
[Huang,Jie]的文章
[Hu,Qianting]的文章
[Song,Zhenlong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。