中文版 | English
题名

The (M-1)+1 Framework of Relaxed Pareto Dominance for Evolutionary Many-Objective Optimization

作者
通讯作者Zhu,Shuwei
DOI
发表日期
2021
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12654 LNCS
页码
349-361
摘要
In the past several years, it has become apparent that the effectiveness of Pareto dominance-based multiobjective evolutionary algorithms degrades dramatically when solving many-objective optimization problems (MaOPs). Instead, research efforts have been driven toward developing evolutionary algorithms (EAs) that do not rely on Pareto dominance (e.g., decomposition-based techniques) to solve MaOPs. However, it is still a non-trivial issue for many existing non-Pareto-dominance-based EAs to deal with unknown irregular Pareto front shapes. In this paper, we develop the novel “(M-1)+1" framework of relaxed Pareto dominance to address MaOPs, which can simultaneously promote both convergence and diversity. To be specific, we apply M symmetrical cases of relaxed Pareto dominance during the environmental selection step, where each enhances the selection pressure of M-1 objectives by expanding the dominance area of solutions, while remaining unchanged for the one objective left out of that process. Experiments demonstrate that the proposed method is very competitive with or outperforms state-of-the-art methods on a variety of scalable test problems.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20212310467527
EI主题词
Artificial intelligence ; Computer science ; Computers
EI分类号
Artificial Intelligence:723.4
Scopus记录号
2-s2.0-85107310834
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/242313
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Tongji University,Shanghai,201804,China
2.Michigan State University,East Lansing,48824,United States
3.Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Zhu,Shuwei,Xu,Lihong,Goodman,Erik,et al. The (M-1)+1 Framework of Relaxed Pareto Dominance for Evolutionary Many-Objective Optimization[C],2021:349-361.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu,Shuwei]的文章
[Xu,Lihong]的文章
[Goodman,Erik]的文章
百度学术
百度学术中相似的文章
[Zhu,Shuwei]的文章
[Xu,Lihong]的文章
[Goodman,Erik]的文章
必应学术
必应学术中相似的文章
[Zhu,Shuwei]的文章
[Xu,Lihong]的文章
[Goodman,Erik]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。