题名 | Manifold Learning Inspired Mating Restriction for Evolutionary Constrained Multiobjective Optimization |
作者 | |
通讯作者 | He,Cheng |
DOI | |
发表日期 | 2021
|
会议名称 | Evolutionary Multi-Criterion Optimization (EMO 2021)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 12654 LNCS
|
页码 | 296-307
|
会议日期 | March 28–31, 2021
|
会议地点 | Shenzhen, China
|
摘要 | Mating restriction strategies are capable of restricting the distribution of parent solutions for effective offspring generation in evolutionary algorithms (EAs). Studies have shown the importance of these strategies in improving the performance of EAs for multiobjective optimization. Our previous study proposed a specific manifold learning inspired mating restriction (MLMR) strategy. It has shown promising capability of solving multiobjective optimization problems (MOPs) with complicated Pareto set shapes. However, the effect of mating restriction strategies in solving constrained MOPs is yet to be well studied. Here, we investigate the effectiveness of MLMR for solving constrained MOPs. The MLMR strategy is embedded into some representative multiobjective EAs and tested on various benchmark constrained MOPs. Experimental results indicate the encouraging performance of MLMR in constrained multiobjective optimization. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20212310467523
|
EI主题词 | Constrained Optimization
; Evolutionary Algorithms
|
EI分类号 | Optimization Techniques:921.5
; Systems Science:961
|
Scopus记录号 | 2-s2.0-85107304347
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/242317 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China,School of Artificial Intelligence and Automation,Huazhong University of Science and Technology,Wuhan,430074,China 2.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China |
通讯作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Li,Lianghao,He,Cheng,Cheng,Ran,et al. Manifold Learning Inspired Mating Restriction for Evolutionary Constrained Multiobjective Optimization[C],2021:296-307.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
0.6Manifold Learning(1068KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论