中文版 | English
题名

Dimension Dropout for Evolutionary High-Dimensional Expensive Multiobjective Optimization

作者
通讯作者Cheng,Ran
DOI
发表日期
2021
会议名称
Evolutionary Multi-Criterion Optimization (EMO 2021)
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12654 LNCS
页码
567-579
会议日期
March 28–31, 2021
会议地点
Shenzhen, China
摘要

In the past decades, a number of surrogate-assisted evolutionary algorithms (SAEAs) have been developed to solve expensive multiobjective optimization problems (EMOPs). However, most existing SAEAs focus on low-dimensional optimization problems, since a large number of training samples are required (which is unrealistic for EMOPs) to build an accurate surrogate model for high-dimensional problems. In this paper, an SAEA with Dimension Dropout is proposed to solve high-dimensional EMOPs. At each iteration of the proposed algorithm, it randomly selects a part of the decision variables by Dimension Dropout, and then optimizes the selected decision variables with the assistance of surrogate models. To balance the convergence and diversity, those candidate solutions with good diversity are modified by replacing the selected decision variables with those optimized ones (i.e., decision variables from some better-converged candidate solutions). Eventually, the new candidate solutions are evaluated using expensive functions to update the archive. Empirical studies on ten benchmark problems with up to 200 decision variables demonstrate the competitiveness of the proposed algorithm.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20212310467546
EI主题词
Decision Making ; Iterative Methods ; Multiobjective Optimization
EI分类号
Management:912.2 ; Optimization Techniques:921.5 ; Numerical Methods:921.6
Scopus记录号
2-s2.0-85107271850
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/242323
专题工学院_计算机科学与工程系
作者单位
Shenzhen Key Laboratory of Computational Intelligence,University Key Laboratory of Evolving Intelligent Systems of Guangdong Province,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Lin,Jianqing,He,Cheng,Cheng,Ran. Dimension Dropout for Evolutionary High-Dimensional Expensive Multiobjective Optimization[C],2021:567-579.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
0.1Dimension Dropout(438KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lin,Jianqing]的文章
[He,Cheng]的文章
[Cheng,Ran]的文章
百度学术
百度学术中相似的文章
[Lin,Jianqing]的文章
[He,Cheng]的文章
[Cheng,Ran]的文章
必应学术
必应学术中相似的文章
[Lin,Jianqing]的文章
[He,Cheng]的文章
[Cheng,Ran]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。