题名 | Dimension Dropout for Evolutionary High-Dimensional Expensive Multiobjective Optimization |
作者 | |
通讯作者 | Cheng,Ran |
DOI | |
发表日期 | 2021
|
会议名称 | Evolutionary Multi-Criterion Optimization (EMO 2021)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 12654 LNCS
|
页码 | 567-579
|
会议日期 | March 28–31, 2021
|
会议地点 | Shenzhen, China
|
摘要 | In the past decades, a number of surrogate-assisted evolutionary algorithms (SAEAs) have been developed to solve expensive multiobjective optimization problems (EMOPs). However, most existing SAEAs focus on low-dimensional optimization problems, since a large number of training samples are required (which is unrealistic for EMOPs) to build an accurate surrogate model for high-dimensional problems. In this paper, an SAEA with Dimension Dropout is proposed to solve high-dimensional EMOPs. At each iteration of the proposed algorithm, it randomly selects a part of the decision variables by Dimension Dropout, and then optimizes the selected decision variables with the assistance of surrogate models. To balance the convergence and diversity, those candidate solutions with good diversity are modified by replacing the selected decision variables with those optimized ones (i.e., decision variables from some better-converged candidate solutions). Eventually, the new candidate solutions are evaluated using expensive functions to update the archive. Empirical studies on ten benchmark problems with up to 200 decision variables demonstrate the competitiveness of the proposed algorithm. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20212310467546
|
EI主题词 | Decision Making
; Iterative Methods
; Multiobjective Optimization
|
EI分类号 | Management:912.2
; Optimization Techniques:921.5
; Numerical Methods:921.6
|
Scopus记录号 | 2-s2.0-85107271850
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/242323 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Shenzhen Key Laboratory of Computational Intelligence,University Key Laboratory of Evolving Intelligent Systems of Guangdong Province,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Lin,Jianqing,He,Cheng,Cheng,Ran. Dimension Dropout for Evolutionary High-Dimensional Expensive Multiobjective Optimization[C],2021:567-579.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
0.1Dimension Dropout(438KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论