中文版 | English
题名

Trajectory fingerprint: one-shot human trajectory identification using Siamese network

作者
通讯作者Fan,Zipei
发表日期
2020-06-01
DOI
发表期刊
EISSN
2524-5228
卷号2期号:2页码:113-125
摘要
Extracting identifiable information from human trajectories is a fundamental task in many location-based services (LBS), such as personalized POI recommendation system, irregular human movement detection and privacy protection. Existing studies assume that we have collected sufficient trajectory data for each user, and therefore a classifier could be trained to distinguish the users. However, in many real-world scenarios, due to unregistered users or less active users, human trajectory data is very fragmentary and we can hardly collect sufficient training samples for each user to train the classifier. Moreover, we could hardly define a clear user set for user identification because the set of users are dynamic and changing everyday (there are always new users and inactive users everyday in the real-world human trajectory dataset). Bearing these in mind, we propose an one-shot learning framework for human trajectory identification to handle the insufficient samples and dynamic user set problems. Sliced encoder neural network is designed to encoder the spatiotemporal characteristics and Siamese network is applied to extract the discriminative features for identification. Experiments are conducted on real-world human trajectory dataset to show the advantageous performance of our algorithm.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
EI入藏号
20220811693522
EI主题词
Encoding (symbols) ; Learning systems ; Location based services ; Signal encoding ; Telecommunication services ; User profile
EI分类号
Telecommunication; Radar, Radio and Television:716 ; Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2
Scopus记录号
2-s2.0-85108016181
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/242352
专题工学院_计算机科学与工程系
作者单位
1.SUSTech-UTokyo Joint Research Center on Super Smart City,Department of Computer Science and Engineering,Southern University of Science and Technology (SUSTech),Shenzhen,China
2.Center for Spatial Information Science,University of Tokyo,Kashiwa,Japan
3.Yahoo Japan Corporation,Tokyo,Japan
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Fan,Zipei,Song,Xuan,Chen,Quanjun,et al. Trajectory fingerprint: one-shot human trajectory identification using Siamese network[J]. CCF Transactions on Pervasive Computing and Interaction,2020,2(2):113-125.
APA
Fan,Zipei,Song,Xuan,Chen,Quanjun,Jiang,Renhe,Shibasaki,Ryosuke,&Tsubouchi,Kota.(2020).Trajectory fingerprint: one-shot human trajectory identification using Siamese network.CCF Transactions on Pervasive Computing and Interaction,2(2),113-125.
MLA
Fan,Zipei,et al."Trajectory fingerprint: one-shot human trajectory identification using Siamese network".CCF Transactions on Pervasive Computing and Interaction 2.2(2020):113-125.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fan,Zipei]的文章
[Song,Xuan]的文章
[Chen,Quanjun]的文章
百度学术
百度学术中相似的文章
[Fan,Zipei]的文章
[Song,Xuan]的文章
[Chen,Quanjun]的文章
必应学术
必应学术中相似的文章
[Fan,Zipei]的文章
[Song,Xuan]的文章
[Chen,Quanjun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。