题名 | Trajectory fingerprint: one-shot human trajectory identification using Siamese network |
作者 | |
通讯作者 | Fan,Zipei |
发表日期 | 2020-06-01
|
DOI | |
发表期刊 | |
EISSN | 2524-5228
|
卷号 | 2期号:2页码:113-125 |
摘要 | Extracting identifiable information from human trajectories is a fundamental task in many location-based services (LBS), such as personalized POI recommendation system, irregular human movement detection and privacy protection. Existing studies assume that we have collected sufficient trajectory data for each user, and therefore a classifier could be trained to distinguish the users. However, in many real-world scenarios, due to unregistered users or less active users, human trajectory data is very fragmentary and we can hardly collect sufficient training samples for each user to train the classifier. Moreover, we could hardly define a clear user set for user identification because the set of users are dynamic and changing everyday (there are always new users and inactive users everyday in the real-world human trajectory dataset). Bearing these in mind, we propose an one-shot learning framework for human trajectory identification to handle the insufficient samples and dynamic user set problems. Sliced encoder neural network is designed to encoder the spatiotemporal characteristics and Siamese network is applied to extract the discriminative features for identification. Experiments are conducted on real-world human trajectory dataset to show the advantageous performance of our algorithm. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
EI入藏号 | 20220811693522
|
EI主题词 | Encoding (symbols)
; Learning systems
; Location based services
; Signal encoding
; Telecommunication services
; User profile
|
EI分类号 | Telecommunication; Radar, Radio and Television:716
; Information Theory and Signal Processing:716.1
; Data Processing and Image Processing:723.2
|
Scopus记录号 | 2-s2.0-85108016181
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/242352 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.SUSTech-UTokyo Joint Research Center on Super Smart City,Department of Computer Science and Engineering,Southern University of Science and Technology (SUSTech),Shenzhen,China 2.Center for Spatial Information Science,University of Tokyo,Kashiwa,Japan 3.Yahoo Japan Corporation,Tokyo,Japan |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Fan,Zipei,Song,Xuan,Chen,Quanjun,et al. Trajectory fingerprint: one-shot human trajectory identification using Siamese network[J]. CCF Transactions on Pervasive Computing and Interaction,2020,2(2):113-125.
|
APA |
Fan,Zipei,Song,Xuan,Chen,Quanjun,Jiang,Renhe,Shibasaki,Ryosuke,&Tsubouchi,Kota.(2020).Trajectory fingerprint: one-shot human trajectory identification using Siamese network.CCF Transactions on Pervasive Computing and Interaction,2(2),113-125.
|
MLA |
Fan,Zipei,et al."Trajectory fingerprint: one-shot human trajectory identification using Siamese network".CCF Transactions on Pervasive Computing and Interaction 2.2(2020):113-125.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论