中文版 | English
题名

Multi-task additive models for robust estimation and automatic structure discovery

作者
通讯作者Chen,Hong
发表日期
2020
ISSN
1049-5258
会议录名称
卷号
2020-December
摘要
Additive models have attracted much attention for high-dimensional regression estimation and variable selection. However, the existing models are usually limited to the single-task learning framework under the mean squared error (MSE) criterion, where the utilization of variable structure depends heavily on a priori knowledge among variables. For high-dimensional observations in real environment, e.g., Coronal Mass Ejections (CMEs) data, the learning performance of previous methods may be degraded seriously due to the complex non-Gaussian noise and the insufficiency of a prior knowledge on variable structure. To tackle this problem, we propose a new class of additive models, called Multi-task Additive Models (MAM), by integrating the mode-induced metric, the structure-based regularizer, and additive hypothesis spaces into a bilevel optimization framework. Our approach does not require any priori knowledge of variable structure and suits for high-dimensional data with complex noise, e.g., skewed noise, heavy-tailed noise, and outliers. A smooth iterative optimization algorithm with convergence guarantees is provided to implement MAM efficiently. Experiments on simulations and the CMEs analysis demonstrate the competitive performance of our approach for robust estimation and automatic structure discovery.
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20212610554791
EI主题词
Additives ; Clustering algorithms ; Gaussian noise (electronic) ; Iterative methods ; Mean square error
EI分类号
Chemical Agents and Basic Industrial Chemicals:803 ; Information Sources and Analysis:903.1 ; Numerical Methods:921.6 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85101345888
来源库
Scopus
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/242365
专题工学院_计算机科学与工程系
作者单位
1.College of Informatics,Huazhong Agricultural University,China
2.College of Science,Huazhong Agricultural University,China
3.Department of Computer Science and Engineering,Southern University of Science and Technology,China
4.Department of Mathematics and Statistics,University of Ottawa,Canada
5.School of Computer Science and Technology,Xi’an Jiaotong University,China
6.National Space Science Center,Chinese Academy of Sciences,China
推荐引用方式
GB/T 7714
Wang,Yingjie,Chen,Hong,Zheng,Feng,et al. Multi-task additive models for robust estimation and automatic structure discovery[C],2020.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Yingjie]的文章
[Chen,Hong]的文章
[Zheng,Feng]的文章
百度学术
百度学术中相似的文章
[Wang,Yingjie]的文章
[Chen,Hong]的文章
[Zheng,Feng]的文章
必应学术
必应学术中相似的文章
[Wang,Yingjie]的文章
[Chen,Hong]的文章
[Zheng,Feng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。