中文版 | English
题名

FPGA-based object detection processor with HOG feature and SVM classifier

作者
DOI
发表日期
2019-09-01
ISSN
2164-1676
EISSN
2164-1706
ISBN
978-1-7281-3484-0
会议录名称
卷号
2019-September
页码
187-190
会议日期
3-6 Sept. 2019
会议地点
Singapore
摘要
Computer vision is an important sensing technique to translate the information to decisions. In robotic applications, object detection is a critical skill to perform tasks for robots in complex environments. The deep-learning framework, e.g. You Only Look Once (YOLO), attracts much more attention recently. Moreover, it is not an optimal solution for a mobile robot since it requires a large scale of hardware resources, on-chip SRAMs, and power consumption. In this work, we report an object detection processor synchronizing the image sensor in FPGA with a cellbased histogram of oriented gradient (HOG) feature descriptor and support vector machine (SVM) classifier by parallel sliding window mechanism. The HOG feature extraction circuitry with pixel-based pipelined architecture constructs the cell-based feature vectors for parallelizing partial SVM-based classification in multiple sliding windows. The SVM classification produces the final result after accumulating the vector components in one sliding window. This framework can be used to both localize and recognize multiple objects in video footage. The proposed object processor, in which the SVM classifier is trained by INRIA datasets, is implemented and verified on Intel Stratix IV FPGA for the pedestrian.
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20202208711542
EI主题词
Classification (of information) ; Deep learning ; Support vector machines ; Decoding ; Feature extraction ; Field programmable gate arrays (FPGA) ; Graphic methods ; Computer vision ; Vectors ; Object recognition
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Information Theory and Signal Processing:716.1 ; Logic Elements:721.2 ; Computer Software, Data Handling and Applications:723 ; Data Processing and Image Processing:723.2 ; Computer Applications:723.5 ; Vision:741.2 ; Information Sources and Analysis:903.1 ; Algebra:921.1
Scopus记录号
2-s2.0-85085189285
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9087991
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/242378
专题南方科技大学
作者单位
1.Southern University of Science and Technology,China
2.Huazhong University of Science and Technology,China
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
An,Fengwei,Xu,Peng,Xiao,Zhihua,et al. FPGA-based object detection processor with HOG feature and SVM classifier[C],2019:187-190.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[An,Fengwei]的文章
[Xu,Peng]的文章
[Xiao,Zhihua]的文章
百度学术
百度学术中相似的文章
[An,Fengwei]的文章
[Xu,Peng]的文章
[Xiao,Zhihua]的文章
必应学术
必应学术中相似的文章
[An,Fengwei]的文章
[Xu,Peng]的文章
[Xiao,Zhihua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。