题名 | FPGA-based object detection processor with HOG feature and SVM classifier |
作者 | |
DOI | |
发表日期 | 2019-09-01
|
ISSN | 2164-1676
|
EISSN | 2164-1706
|
ISBN | 978-1-7281-3484-0
|
会议录名称 | |
卷号 | 2019-September
|
页码 | 187-190
|
会议日期 | 3-6 Sept. 2019
|
会议地点 | Singapore
|
摘要 | Computer vision is an important sensing technique to translate the information to decisions. In robotic applications, object detection is a critical skill to perform tasks for robots in complex environments. The deep-learning framework, e.g. You Only Look Once (YOLO), attracts much more attention recently. Moreover, it is not an optimal solution for a mobile robot since it requires a large scale of hardware resources, on-chip SRAMs, and power consumption. In this work, we report an object detection processor synchronizing the image sensor in FPGA with a cellbased histogram of oriented gradient (HOG) feature descriptor and support vector machine (SVM) classifier by parallel sliding window mechanism. The HOG feature extraction circuitry with pixel-based pipelined architecture constructs the cell-based feature vectors for parallelizing partial SVM-based classification in multiple sliding windows. The SVM classification produces the final result after accumulating the vector components in one sliding window. This framework can be used to both localize and recognize multiple objects in video footage. The proposed object processor, in which the SVM classifier is trained by INRIA datasets, is implemented and verified on Intel Stratix IV FPGA for the pedestrian. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20202208711542
|
EI主题词 | Classification (of information)
; Deep learning
; Support vector machines
; Decoding
; Feature extraction
; Field programmable gate arrays (FPGA)
; Graphic methods
; Computer vision
; Vectors
; Object recognition
|
EI分类号 | Ergonomics and Human Factors Engineering:461.4
; Information Theory and Signal Processing:716.1
; Logic Elements:721.2
; Computer Software, Data Handling and Applications:723
; Data Processing and Image Processing:723.2
; Computer Applications:723.5
; Vision:741.2
; Information Sources and Analysis:903.1
; Algebra:921.1
|
Scopus记录号 | 2-s2.0-85085189285
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9087991 |
引用统计 |
被引频次[WOS]:3
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/242378 |
专题 | 南方科技大学 |
作者单位 | 1.Southern University of Science and Technology,China 2.Huazhong University of Science and Technology,China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
An,Fengwei,Xu,Peng,Xiao,Zhihua,et al. FPGA-based object detection processor with HOG feature and SVM classifier[C],2019:187-190.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论