题名 | Utility of Brain Parcellation in Enhancing Brain Tumor Segmentation and Survival Prediction |
作者 | |
通讯作者 | Tang,Xiaoying |
DOI | |
发表日期 | 2021
|
会议名称 | 6th International MICCAI Brain-Lesion Workshop (BrainLes)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-030-72083-4
|
会议录名称 | |
卷号 | 12658 LNCS
|
页码 | 391-400
|
会议日期 | OCT 04, 2020
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | In this paper, we proposed a UNet-based brain tumor segmentation method and a linear model-based survival prediction method. The effectiveness of UNet has been validated in automatically segmenting brain tumors from multimodal magnetic resonance (MR) images. Rather than network architecture, we focused more on making use of additional information (brain parcellation), training and testing strategy (coarse-to-fine), and ensemble technique to improve the segmentation performance. We then developed a linear classification model for survival prediction. Different from previous studies that mainly employ features from brain tumor segmentation, we also extracted features from brain parcellation, which further improved the prediction accuracy. On the challenge testing dataset, the proposed approach yielded average Dice scores of 88.43%, 84.51%, and 78.93% for the whole tumor, tumor core, and enhancing tumor in the segmentation task and an overall accuracy of 0.533 in the survival prediction task. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS研究方向 | Computer Science
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000892566900035
|
EI入藏号 | 20212310474428
|
EI主题词 | Brain
; Forecasting
; Image segmentation
; Magnetic resonance
; Medical imaging
; Network architecture
; Statistical tests
|
EI分类号 | Biomedical Engineering:461.1
; Biological Materials and Tissue Engineering:461.2
; Magnetism: Basic Concepts and Phenomena:701.2
; Mathematical Statistics:922.2
|
Scopus记录号 | 2-s2.0-85107377927
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/242435 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China 2.Department of Electrical and Electronic Engineering,The University of Hong Kong,Hong Kong 3.School of Electronics and Information Technology,Sun Yat-Sen University,Guangzhou,China 4.School of Life Science and Technology,University of Electronic Science and Technology,Chengdu,China |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Zhang,Yue,Wu,Jiewei,Huang,Weikai,et al. Utility of Brain Parcellation in Enhancing Brain Tumor Segmentation and Survival Prediction[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2021:391-400.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论