中文版 | English
题名

Linear Classification Function Emulated by Pectin-Based Polysaccharide-Gated Multiterminal Neuron Transistors

作者
通讯作者Liu,Yanghui
发表日期
2021
DOI
发表期刊
ISSN
1616-301X
EISSN
1616-3028
卷号31期号:33
摘要

Neuromorphic computing, which merges learning and memory functions, is a new computing paradigm surpassing traditional von Neumann architecture. Apart from the plasticity of artificial synapses, the simulation of neurons’ multi-input signal integration is also of great significance to realize efficient neuromorphic computing. Since the structure of transistors and neurons is strikingly similar, capacitively coupled multi-terminal pectin-gated oxide electric double layer transistors are proposed here as artificial neurons for classification. In this work, the free logic switching of “AND” and “OR” is realized in the device with triple in-plane gates. More importantly, the linear classification function on a single neuron transistor is demonstrated experimentally for the first time. All the results obtained in this work indicate that the prepared artificial neuron can improve the efficiency of artificial neural networks and thus will play an important role in neuromorphic computing.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
重要成果
NI期刊
学校署名
其他
资助项目
National Natural Science Foundation of China[61904208,91833301]
WOS研究方向
Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目
Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
WOS记录号
WOS:000661058600001
出版者
EI入藏号
20212410504880
EI主题词
Computation theory ; Neurons ; Terminals (electric) ; Transistors
EI分类号
Biology:461.9 ; Electric Components:704.1 ; Semiconductor Devices and Integrated Circuits:714.2 ; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
ESI学科分类
MATERIALS SCIENCE
Scopus记录号
2-s2.0-85107719248
来源库
Scopus
引用统计
被引频次[WOS]:33
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/242444
专题工学院_深港微电子学院
作者单位
1.State Key Laboratory of Optoelectronic Materials and Technologies,School of Materials,Sun Yat-sen University,Guangzhou,510275,China
2.School of Microelectronics,Southern University of Science and Technology,Shenzhen,518055,China
推荐引用方式
GB/T 7714
Guo,Jianmiao,Liu,Yanghui,Zhou,Feichi,et al. Linear Classification Function Emulated by Pectin-Based Polysaccharide-Gated Multiterminal Neuron Transistors[J]. ADVANCED FUNCTIONAL MATERIALS,2021,31(33).
APA
Guo,Jianmiao,Liu,Yanghui,Zhou,Feichi,Li,Fangzhou,Li,Yingtao,&Huang,Feng.(2021).Linear Classification Function Emulated by Pectin-Based Polysaccharide-Gated Multiterminal Neuron Transistors.ADVANCED FUNCTIONAL MATERIALS,31(33).
MLA
Guo,Jianmiao,et al."Linear Classification Function Emulated by Pectin-Based Polysaccharide-Gated Multiterminal Neuron Transistors".ADVANCED FUNCTIONAL MATERIALS 31.33(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Linear Classificatio(2903KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Guo,Jianmiao]的文章
[Liu,Yanghui]的文章
[Zhou,Feichi]的文章
百度学术
百度学术中相似的文章
[Guo,Jianmiao]的文章
[Liu,Yanghui]的文章
[Zhou,Feichi]的文章
必应学术
必应学术中相似的文章
[Guo,Jianmiao]的文章
[Liu,Yanghui]的文章
[Zhou,Feichi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。