中文版 | English
题名

Specularizer : Detecting Speculative Execution Attacks via Performance Tracing

作者
通讯作者Zhang,Yinqian
DOI
发表日期
2021
会议名称
18th International Conference on Detection of Intrusions and Malware and Vulnerability Assessment (DIMVA)
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12756 LNCS
页码
151-172
会议日期
JUL 14-16, 2021
会议地点
null,null,ELECTR NETWORK
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要

This paper presents Specularizer, a framework for uncovering speculative execution attacks using performance tracing features available in commodity processors. It is motivated by the practical difficulty of eradicating such vulnerabilities in the design of CPU hardware and operating systems and the principle of defense-in-depth. The key idea of Specularizer is the use of Hardware Performance Counters and Processor Trace to perform lightweight monitoring of production applications and the use of machine learning techniques for identifying the occurrence of the attacks during offline forensics analysis. Different from prior works that use performance counters to detect side-channel attacks, Specularizer monitors triggers of the critical paths of the speculative execution attacks, thus making the detection mechanisms robust to different choices of side channels used in the attacks. To evaluate Specularizer, we model all known types of exception-based and misprediction-based speculative execution attacks and automatically generate thousands of attack variants. Experimental results show that Specularizer yields superior detection accuracy and the online tracing of Specularizer incur reasonable overhead.;This paper presents Specularizer, a framework for uncovering speculative execution attacks using performance tracing features available in commodity processors. It is motivated by the practical difficulty of eradicating such vulnerabilities in the design of CPU hardware and operating systems and the principle of defense-in-depth. The key idea of Specularizer is the use of Hardware Performance Counters and Processor Trace to perform lightweight monitoring of production applications and the use of machine learning techniques for identifying the occurrence of the attacks during offline forensics analysis. Different from prior works that use performance counters to detect side-channel attacks, Specularizer monitors triggers of the critical paths of the speculative execution attacks, thus making the detection mechanisms robust to different choices of side channels used in the attacks. To evaluate Specularizer, we model all known types of exception-based and misprediction-based speculative execution attacks and automatically generate thousands of attack variants. Experimental results show that Specularizer yields superior detection accuracy and the online tracing of Specularizer incur reasonable overhead.

学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号
WOS:000691572200008
EI入藏号
20213310764559
EI主题词
Learning systems ; Malware
EI分类号
Computer Software, Data Handling and Applications:723
Scopus记录号
2-s2.0-85112335490
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/243058
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.The Ohio State University,Columbus,43210,United States
2.Southern University of Science and Technology,Shenzhen,Guangdong,518055,China
3.NIO Security Research,San Jose,95134,United States
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Wang,Wubing,Chen,Guoxing,Cheng,Yueqiang,et al. Specularizer : Detecting Speculative Execution Attacks via Performance Tracing[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2021:151-172.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
SPECULARIZER.pdf(1007KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Wubing]的文章
[Chen,Guoxing]的文章
[Cheng,Yueqiang]的文章
百度学术
百度学术中相似的文章
[Wang,Wubing]的文章
[Chen,Guoxing]的文章
[Cheng,Yueqiang]的文章
必应学术
必应学术中相似的文章
[Wang,Wubing]的文章
[Chen,Guoxing]的文章
[Cheng,Yueqiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。