中文版 | English
题名

Electrical imaging of hydraulic fracturing fluid using steel-cased wells and a deep-learning method

作者
通讯作者Yang, Dikun
发表日期
2021-08-01
DOI
发表期刊
ISSN
0016-8033
EISSN
1942-2156
卷号86期号:4
摘要
Steel-cased wells used as long electrodes (LEs) in a surface-electric or electromagnetic survey can enhance anomalous sig-nals from deep hydraulic fracturing zones filled by injected fluid. Although recent research has been published on the algo-rithms designed for the simulation of the effect of casings, feasibility studies on resolving the small-scale fracturing fluid flow from surface data are lacking. We have carried out a de-tectability and recoverability study for a top-casing electric source configuration. Applying a fast 3D DC modeling code using the concept of the equivalent resistor network, the detect-ability study shows that favorable conditions for detecting the fluid flow direction include multiple electrically coupled wells and different electric conductivities above and below the shale layer. The observed behavior is then modeled through a circuit analog. For the purpose of fracturing fluid imaging, the model for recovery is simplified as a distribution of full fluid saturation on a 2D fracture plane. A deep-learning (DL) framework is adopted to solve the imaging problem, which is difficult for con-ventional regularized inversions. Our DL implementation uses a supervised deep fully convolutional network to learn the rela-tionship between data patterns on the surface and the model of fracturing fluid distribution, encoded in a large number of synthetic data-model pairs. Once trained, the neural network can make a real-time and pixel-wise prediction of the fluid dis-tribution. The robustness of our DL approach is tested in the presence of ambient noise and inaccuracies in casing conduc-tivity. A reasonably consistent prediction performance has been observed. Our numerical feasibility study results demonstrate that electric surveys using steel casings as LEs have great potentials in real-time monitoring of fracturing fluid flow.
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Founda-tion of China[41974087] ; Shenzhen Key Lab-oratory of Deep Offshore Oil and Gas Exploration Technology[ZDSYS20190902093007855]
WOS研究方向
Geochemistry & Geophysics
WOS类目
Geochemistry & Geophysics
WOS记录号
WOS:000685070000008
出版者
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
被引频次[WOS]:15
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/244953
专题理学院_地球与空间科学系
作者单位
1.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Shenzhen Key Lab Deep Offshore Oil & Gas Explorat, Shenzhen 518055, Peoples R China
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系;  南方科技大学
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Li, Yinchu,Yang, Dikun. Electrical imaging of hydraulic fracturing fluid using steel-cased wells and a deep-learning method[J]. GEOPHYSICS,2021,86(4).
APA
Li, Yinchu,&Yang, Dikun.(2021).Electrical imaging of hydraulic fracturing fluid using steel-cased wells and a deep-learning method.GEOPHYSICS,86(4).
MLA
Li, Yinchu,et al."Electrical imaging of hydraulic fracturing fluid using steel-cased wells and a deep-learning method".GEOPHYSICS 86.4(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li, Yinchu]的文章
[Yang, Dikun]的文章
百度学术
百度学术中相似的文章
[Li, Yinchu]的文章
[Yang, Dikun]的文章
必应学术
必应学术中相似的文章
[Li, Yinchu]的文章
[Yang, Dikun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。