中文版 | English
题名

Dynamic iterative approximate deconvolution models for large-eddy simulation of turbulence

作者
通讯作者Wang, Jianchun
发表日期
2021-08-01
DOI
发表期刊
ISSN
1070-6631
EISSN
1089-7666
卷号33期号:8
摘要
Dynamic iterative approximate deconvolution (DIAD) models with Galilean invariance are developed for subgrid-scale (SGS) stress in the large-eddy simulation (LES) of turbulence. The DIAD models recover the unfiltered variables using the filtered variables at neighboring points and iteratively update model coefficients without any a priori knowledge of direct numerical simulation (DNS) data. The a priori analysis indicates that the DIAD models reconstruct the unclosed SGS stress much better than the classical velocity gradient model and approximate deconvolution model with different filter scales ranging from viscous to inertial regions. We also propose a small-scale eddy viscosity (SSEV) model as an artificial dissipation to suppress the numerical instability based on a scale-similarity-based dynamic method without affecting large-scale flow structures. The SSEV model can predict a velocity spectrum very close to that of DNS data, similar to the traditional implicit large-eddy simulation. In the a posteriori testing, the SSEV-enhanced DIAD model is superior to the SSEV model, dynamic Smagorinsky model, and dynamic mixed model, which predicts a variety of statistics and instantaneous spatial structures of turbulence much closer to those of filtered DNS data without significantly increasing the computational cost. The types of explicit filters, local spatial averaging methods, and initial conditions do not significantly affect the accuracy of DIAD models. We further successfully apply DIAD models to the homogeneous shear turbulence. These results illustrate that the current SSEV-enhanced DIAD approach is promising in the development of advanced SGS models in the LES of turbulence.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China (NSFC)[91952104,92052301,91752201] ; National Numerical Windtunnel Project[NNW2019ZT1-A04] ; NSFC Basic Science Center Program[11988102] ; Shenzhen Science and Technology Program[KQTD20180411143441009] ; Key Special Project for Introduced Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)[GML2019ZD0103] ; Department of Science and Technology of Guangdong Province[2020B1212030001]
WOS研究方向
Mechanics ; Physics
WOS类目
Mechanics ; Physics, Fluids & Plasmas
WOS记录号
WOS:000685874800010
出版者
EI入藏号
20213510820995
EI主题词
Iterative methods ; Numerical methods ; Turbulence ; Turbulent flow
EI分类号
Fluid Flow:631 ; Fluid Flow, General:631.1 ; Mathematics:921 ; Numerical Methods:921.6
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:23
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/244954
专题工学院_力学与航空航天工程系
作者单位
1.Southern Univ Sci & Technol, Dept Mech & Aerosp Engn, Shenzhen 518055, Peoples R China
2.Southern Marine Sci & Engn Guangdong Lab, Guangzhou 511458, Peoples R China
3.Southern Univ Sci & Technol, Guangdong Hong Kong Macao Joint Lab Data Driven F, Shenzhen 518055, Peoples R China
第一作者单位力学与航空航天工程系;  南方科技大学
通讯作者单位力学与航空航天工程系;  南方科技大学
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Yuan, Zelong,Wang, Yunpeng,Xie, Chenyue,et al. Dynamic iterative approximate deconvolution models for large-eddy simulation of turbulence[J]. PHYSICS OF FLUIDS,2021,33(8).
APA
Yuan, Zelong,Wang, Yunpeng,Xie, Chenyue,&Wang, Jianchun.(2021).Dynamic iterative approximate deconvolution models for large-eddy simulation of turbulence.PHYSICS OF FLUIDS,33(8).
MLA
Yuan, Zelong,et al."Dynamic iterative approximate deconvolution models for large-eddy simulation of turbulence".PHYSICS OF FLUIDS 33.8(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yuan, Zelong]的文章
[Wang, Yunpeng]的文章
[Xie, Chenyue]的文章
百度学术
百度学术中相似的文章
[Yuan, Zelong]的文章
[Wang, Yunpeng]的文章
[Xie, Chenyue]的文章
必应学术
必应学术中相似的文章
[Yuan, Zelong]的文章
[Wang, Yunpeng]的文章
[Xie, Chenyue]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。