中文版 | English
题名

Flow field prediction of supercritical airfoils via variational autoencoder based deep learning framework

作者
通讯作者Zhang, Miao
发表日期
2021-08-01
DOI
发表期刊
ISSN
1070-6631
EISSN
1089-7666
卷号33期号:8
摘要
Effective access to obtain the complex flow fields around an airfoil is crucial in improving the quality of supercritical wings. In this study, a systematic method based on generative deep learning is developed to extract features for depicting the flow fields and predict the steady flow fields around supercritical airfoils. To begin with, a variational autoencoder (VAE) network is designed to extract representative features of the flow fields. Specifically, the principal component analysis technique is adopted to realize feature reduction, aiming to obtain the optimal dimension of features in VAE. Afterward, the extracted features are incorporated into the dataset, followed by the mapping from the airfoil shapes to features via a multilayer perception (MLP) model. Eventually, a composite network is adopted to connect the MLP and the decoder of VAE for predicting the flow fields given the airfoil. The proposed VAE network achieves compression of high-dimensional flow field data into ten representative features. The statistical results indicate the accurate and generalized performance of the proposed method in reconstructing and predicting flow fields around a supercritical airfoil. Especially, our method obtains accurate prediction results over the shock area, indicating its superiority in conducting turbulent flow under high Reynolds number.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Key Project of China[GJXM92579] ; National Natural Science Foundation of China[92052203,61903178,"U20A2030"] ; Shanghai Sailing Program[21YF1459400] ; Shenzhen Science and Technology Program[RCBS20200714114817264]
WOS研究方向
Mechanics ; Physics
WOS类目
Mechanics ; Physics, Fluids & Plasmas
WOS记录号
WOS:000686299700007
出版者
EI入藏号
20213510821124
EI主题词
Airfoils ; Flow fields ; Forecasting ; Learning systems ; Reynolds number ; Steady flow
EI分类号
Fluid Flow, General:631.1 ; Aircraft, General:652.1
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:51
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/244957
专题工学院_计算机科学与工程系
作者单位
1.Shanghai Aircraft Design & Res Inst, Shanghai 200436, Peoples R China
2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen 518055, Peoples R China
3.Tsinghua Univ, Sch Aerosp Engn, Beijing 100084, Peoples R China
推荐引用方式
GB/T 7714
Wang, Jing,He, Cheng,Li, Runze,et al. Flow field prediction of supercritical airfoils via variational autoencoder based deep learning framework[J]. PHYSICS OF FLUIDS,2021,33(8).
APA
Wang, Jing,He, Cheng,Li, Runze,Chen, Haixin,Zhai, Chen,&Zhang, Miao.(2021).Flow field prediction of supercritical airfoils via variational autoencoder based deep learning framework.PHYSICS OF FLUIDS,33(8).
MLA
Wang, Jing,et al."Flow field prediction of supercritical airfoils via variational autoencoder based deep learning framework".PHYSICS OF FLUIDS 33.8(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Jing]的文章
[He, Cheng]的文章
[Li, Runze]的文章
百度学术
百度学术中相似的文章
[Wang, Jing]的文章
[He, Cheng]的文章
[Li, Runze]的文章
必应学术
必应学术中相似的文章
[Wang, Jing]的文章
[He, Cheng]的文章
[Li, Runze]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。