题名 | Trajectory Design for UAV Communications with No-Fly Zones by Deep Reinforcement Learning |
作者 | |
DOI | |
发表日期 | 2021-06-01
|
ISSN | 2164-7038
|
ISBN | 978-1-7281-9442-4
|
会议录名称 | |
页码 | 1-5
|
会议日期 | 14-23 June 2021
|
会议地点 | Montreal, QC, Canada
|
摘要 | This paper studies the trajectory design problem for the cellular-connected unmanned aerial vehicle (UAV) with limited energy, which aims at maximizing the uplink transmission rate from multiple ground users in urban environments with no-fly zones (NFZs). We first argue that the successive convex approximation-based (SCA-based) conventional trajectory design method via formulating and solving optimization problems face challenges, and then we formulate the trajectory design problem for rate maximization as a Markov Decision Process and propose a deep reinforcement learning-based (DRL-based) solution. Simulation results show that the proposed DRL has similar performance to the SCA-based conventional method with regularly shaped NFZ constraints. Moreover, simulation results in a scenario with an irregular NFZ show that the designed trajectories of the proposed DRL can effectively serve users and detour the NFZ. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20213410796365
|
EI主题词 | Antennas
; Design
; Markov processes
; Reinforcement learning
; Trajectories
; Unmanned aerial vehicles (UAV)
; Vehicle transmissions
|
EI分类号 | Mechanical Transmissions:602.2
; Aircraft, General:652.1
; Artificial Intelligence:723.4
; Probability Theory:922.1
|
Scopus记录号 | 2-s2.0-85112800564
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9473572 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/244993 |
专题 | 工学院_电子与电气工程系 前沿与交叉科学研究院 |
作者单位 | 1.Southern University of Science and Technology (SUSTech),Department of Electrical and Electronic Engineering,Shenzhen,China 2.Southern University of Science and Technology (SUSTech),Academy for Advanced Interdisciplinary Studies,Shenzhen,China 3.University of New South Wales (UNSW),School of Electrical Engineering and Telecommunications,Sydney,Australia 4.Southern University of Science and Technology (SUSTech),University Key Laboratory of Advanced Wireless Communications of Guangdong Province,China 5.Peng Cheng Laboratory,Shenzhen,China |
第一作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Liu,Zhenrong,Zeng,Yuan,Zhang,Wei,et al. Trajectory Design for UAV Communications with No-Fly Zones by Deep Reinforcement Learning[C],2021:1-5.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论