题名 | Towards efficient MaxBRNN computation for streaming updates |
作者 | |
通讯作者 | Tang,Bo |
DOI | |
发表日期 | 2021-04-01
|
会议名称 | 2021 IEEE 37th International Conference on Data Engineering (ICDE)
|
ISSN | 1084-4627
|
ISBN | 978-1-7281-9185-0
|
会议录名称 | |
卷号 | 2021-April
|
页码 | 2297-2302
|
会议日期 | 19-22 April 2021
|
会议地点 | Chania, Greece
|
摘要 | In this paper, we propose the streamingMaxBRNNquery, which finds the optimal region to deploy a new service point when both the service points and client points are under continuous updates. The streaming MaxBRNNquery has many applications such as taxi scheduling, shared bike placements, etc. Existing MaxBRNNsolutions are insufficient for streaming updates as they need to re-run from scratch even for a small amount of updates, resulting in long query processing time. To tackle this problem, we devise an efficient slot partitioning-based algorithm (SlotP), which divides the space into equal-sized slots and processes each slot independently. The superiorities of our proposal for streaming MaxBRNNquery are: (i) an update affects only a smaller number of slots and works done on the unaffected slots can be reused directly; (ii) the influence value upper bound of each slot can be derived efficiently and accurately, which facilitate pruning many slots from expensive computation. We conducted extensive experiments to validate the performance of the SlotPalgorithm. The results show that SlotPis 2-3 orders of magnitude faster than state-of-the-art baselines. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS记录号 | WOS:000687830800232
|
EI入藏号 | 20213410801209
|
EI主题词 | Data processing
|
EI分类号 | Automobiles:662.1
; Data Processing and Image Processing:723.2
|
Scopus记录号 | 2-s2.0-85112869043
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9458861 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/244994 |
专题 | 工学院_计算机科学与工程系 工学院_斯发基斯可信自主研究院 |
作者单位 | 1.Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,China 2.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,China 3.Department of Computer Science,The University of Hong Kong,Hong Kong 4.PCL Research Center of Networks and Communications,Peng Cheng Laboratory, |
第一作者单位 | 计算机科学与工程系; 斯发基斯可信自主系统研究院 |
通讯作者单位 | 计算机科学与工程系; 斯发基斯可信自主系统研究院 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Ning,Wentao,Yan,Xiao,Tang,Bo. Towards efficient MaxBRNN computation for streaming updates[C],2021:2297-2302.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Towards_Efficient_Ma(4238KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论