中文版 | English
题名

Towards efficient MaxBRNN computation for streaming updates

作者
通讯作者Tang,Bo
DOI
发表日期
2021-04-01
会议名称
2021 IEEE 37th International Conference on Data Engineering (ICDE)
ISSN
1084-4627
ISBN
978-1-7281-9185-0
会议录名称
卷号
2021-April
页码
2297-2302
会议日期
19-22 April 2021
会议地点
Chania, Greece
摘要

In this paper, we propose the streamingMaxBRNNquery, which finds the optimal region to deploy a new service point when both the service points and client points are under continuous updates. The streaming MaxBRNNquery has many applications such as taxi scheduling, shared bike placements, etc. Existing MaxBRNNsolutions are insufficient for streaming updates as they need to re-run from scratch even for a small amount of updates, resulting in long query processing time. To tackle this problem, we devise an efficient slot partitioning-based algorithm (SlotP), which divides the space into equal-sized slots and processes each slot independently. The superiorities of our proposal for streaming MaxBRNNquery are: (i) an update affects only a smaller number of slots and works done on the unaffected slots can be reused directly; (ii) the influence value upper bound of each slot can be derived efficiently and accurately, which facilitate pruning many slots from expensive computation. We conducted extensive experiments to validate the performance of the SlotPalgorithm. The results show that SlotPis 2-3 orders of magnitude faster than state-of-the-art baselines.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
WOS记录号
WOS:000687830800232
EI入藏号
20213410801209
EI主题词
Data processing
EI分类号
Automobiles:662.1 ; Data Processing and Image Processing:723.2
Scopus记录号
2-s2.0-85112869043
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9458861
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/244994
专题工学院_计算机科学与工程系
工学院_斯发基斯可信自主研究院
作者单位
1.Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,China
2.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,China
3.Department of Computer Science,The University of Hong Kong,Hong Kong
4.PCL Research Center of Networks and Communications,Peng Cheng Laboratory,
第一作者单位计算机科学与工程系;  斯发基斯可信自主系统研究院
通讯作者单位计算机科学与工程系;  斯发基斯可信自主系统研究院
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Ning,Wentao,Yan,Xiao,Tang,Bo. Towards efficient MaxBRNN computation for streaming updates[C],2021:2297-2302.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Towards_Efficient_Ma(4238KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ning,Wentao]的文章
[Yan,Xiao]的文章
[Tang,Bo]的文章
百度学术
百度学术中相似的文章
[Ning,Wentao]的文章
[Yan,Xiao]的文章
[Tang,Bo]的文章
必应学术
必应学术中相似的文章
[Ning,Wentao]的文章
[Yan,Xiao]的文章
[Tang,Bo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。