中文版 | English
题名

Fast core-based top-k frequent pattern discovery in knowledge graphs

作者
通讯作者Tang,Bo
DOI
发表日期
2021-04-01
会议名称
2021 IEEE 37th International Conference on Data Engineering (ICDE)
ISSN
1084-4627
ISBN
978-1-7281-9185-0
会议录名称
卷号
2021-April
页码
936-947
会议日期
19-22 April 2021
会议地点
Chania, Greece
摘要

Knowledge graph is a way of structuring information in graph form, by representing entities as nodes and relationships between entities as edges. A knowledge graph often consists of large amount of facts in real-world which can be used in supporting many analytical tasks, e.g., exceptional facts discovery and fact check of claims. In this work, we study a core-based top-k frequent pattern discovery problem which is frequently used as a subroutine in analyzing knowledge graphs. The main challenge of the problem is search space of the candidate patterns is exponential to the combinations of the nodes and edges in the knowledge graph.To reduce the search space, we devise a novel computation framework FastPat with a suite of optimizations. First, we devise a meta-index, which can be used to avoid generating invalid candidate patterns. Second, we propose an upper bound of the frequency score (i.e., MNI) of the candidate pattern that prunes unqualified candidates earlier and prioritize the enumeration order of the patterns. Lastly, we design a join-based approach to compute the MNI of candidate pattern efficiently. We conduct extensive experimental studies in real-world datasets to verify the superiority of our proposed method over the baselines. We also demonstrate the utility of the discovered frequent patterns by a case study in COVID-19 knowledge graph.

关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
WOS记录号
WOS:000687830800079
EI入藏号
20213410801221
EI主题词
Data processing
EI分类号
Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4
Scopus记录号
2-s2.0-85112868262
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9458875
引用统计
被引频次[WOS]:7
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/244995
专题工学院_斯发基斯可信自主研究院
工学院_计算机科学与工程系
作者单位
1.Harbin Institute of Technology,
2.University of Macau,SKL of Internet of Things for Smart City,Dept. of Computer and Information Science,Macao
3.Research Institute of Trustworthy Autonomous Systems,Southern University of Science and Technology,China
4.Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,China
通讯作者单位斯发基斯可信自主系统研究院
推荐引用方式
GB/T 7714
Zeng,Jian,Leong Hou,U.,Yan,Xiao,et al. Fast core-based top-k frequent pattern discovery in knowledge graphs[C],2021:936-947.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Fast_Core-based_Top-(2866KB)----开放获取--浏览
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zeng,Jian]的文章
[Leong Hou,U.]的文章
[Yan,Xiao]的文章
百度学术
百度学术中相似的文章
[Zeng,Jian]的文章
[Leong Hou,U.]的文章
[Yan,Xiao]的文章
必应学术
必应学术中相似的文章
[Zeng,Jian]的文章
[Leong Hou,U.]的文章
[Yan,Xiao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Fast_Core-based_Top-k_Frequent_Pattern_Discovery_in_Knowledge_Graphs.pdf
格式: Adobe PDF
文件名: Fast_Core-based_Top-k_Frequent_Pattern_Discovery_in_Knowledge_Graphs.pdf
格式: Adobe PDF
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。