中文版 | English
题名

GRAB: Finding time series natural structures via a novel graph-based scheme

作者
DOI
发表日期
2021-04-01
会议名称
2021 IEEE 37th International Conference on Data Engineering (ICDE)
ISSN
1084-4627
ISBN
978-1-7281-9185-0
会议录名称
卷号
2021-April
页码
2267-2272
会议日期
19-22 April 2021
会议地点
Chania, Greece
摘要

In recent years, the widespread use of sensors has substantially stimulated researchers' interest in time series data mining. Real-world time series often include natural structures. For example, a time series captured from a patient rehabilitation app can be divided into a series of movements, e.g., sitting, standing, and walking. Finding time series natural structures (i.e., latent semantic states) is one of the core subroutines in time series mining applications. However, this task is not trivial as it has two challenges: (1) how to determine the correct change points between consecutive segments, and (2) how to cluster segments into different states.In this paper, we propose a novel graph-based approach, GRAB, to discover time series natural structures. In particular, GRAB first partitions the time series into a set of non-overlapping fragments via the similarity between subsequences. Then, it constructs a fragment-based graph and employs a graph partition method to cluster the fragments into states. Extensive experiments on real-world datasets demonstrate the effectiveness and efficiency of our GRAB method. Specifically, GRAB finds high-quality latent states, and it outperforms state-of-the-art solutions by orders of magnitude.

关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
WOS记录号
WOS:000687830800227
EI入藏号
20213410801231
EI主题词
Data mining ; Graphic methods ; Patient rehabilitation ; Semantics ; Time series
EI分类号
Rehabilitation Engineering and Assistive Technology:461.5 ; Data Processing and Image Processing:723.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Mathematical Statistics:922.2
Scopus记录号
2-s2.0-85112864421
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9458905
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/244996
专题工学院_计算机科学与工程系
作者单位
1.Fudan University,School of Computer Science,China
2.Southern University of Science and Technology,Department of Computer Science and Engineering,China
3.Tsinghua University,School of Software,EIRI,China
推荐引用方式
GB/T 7714
Lu,Yi,Wang,Peng,Tang,Bo,et al. GRAB: Finding time series natural structures via a novel graph-based scheme[C],2021:2267-2272.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
GRAB_Finding_Time_Se(1774KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lu,Yi]的文章
[Wang,Peng]的文章
[Tang,Bo]的文章
百度学术
百度学术中相似的文章
[Lu,Yi]的文章
[Wang,Peng]的文章
[Tang,Bo]的文章
必应学术
必应学术中相似的文章
[Lu,Yi]的文章
[Wang,Peng]的文章
[Tang,Bo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。