中文版 | English
题名

Forecasting ambulance demand with profiled human mobility via heterogeneous multi-graph neural networks

作者
通讯作者Jiang,Renhe
DOI
发表日期
2021-04-01
ISSN
1084-4627
ISBN
978-1-7281-9185-0
会议录名称
卷号
2021-April
页码
1751-1762
会议日期
19-22 April 2021
会议地点
Chania, Greece
摘要
Forecasting regional ambulance demand plays a fundamental part in dynamic fleet allocation and redeployment. This topic has been gaining increasing significance, as virtually every country is experiencing an aging population, with generally higher level of vulnerability and demand for the emergency medical service (EMS). Although exploring the spatial and temporal correlations in EMS historical records, the existing methods principally consider the former time-invariant, which does not necessarily hold in reality. Moreover, this assumption ignores the fact that the behind-the-scenes dynamics are people, whose demographic profiles and activity patterns could be determinants of regional EMS demands. In this paper, we are therefore motivated to mine the collective daily routines in human mobility, to further represent the evolving spatial correlations. Particularly, we model profiled mobility groups as multiple random walkers and propose a novel bicomponent neural network, including a heterogeneous multi-graph convolution layer and spatio-temporal interlacing attention module, to perform the prediction task. Experimental results on the real-world data verify the effectiveness of introducing dynamic human mobility and the advantage of our approach over the state-of-the-art models.
关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
WOS记录号
WOS:000687830800146
EI入藏号
20213410801177
EI主题词
Ambulances ; Emergency services ; Forecasting
EI分类号
Biomedical Equipment, General:462.1 ; Accidents and Accident Prevention:914.1
Scopus记录号
2-s2.0-85112864170
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9458623
引用统计
被引频次[WOS]:22
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/244997
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.The University of Tokyo,Center for Spatial Information Science,Japan
2.National Institute of Advanced Industrial Science and Technology,Artificial Intelligence Research Center,
3.AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory,
4.SUSTech-UTokyo Joint Research Center on Super Smart City,Southern University of Science and Technology,
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Wang,Zhaonan,Xia,Tianqi,Jiang,Renhe,et al. Forecasting ambulance demand with profiled human mobility via heterogeneous multi-graph neural networks[C],2021:1751-1762.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Zhaonan]的文章
[Xia,Tianqi]的文章
[Jiang,Renhe]的文章
百度学术
百度学术中相似的文章
[Wang,Zhaonan]的文章
[Xia,Tianqi]的文章
[Jiang,Renhe]的文章
必应学术
必应学术中相似的文章
[Wang,Zhaonan]的文章
[Xia,Tianqi]的文章
[Jiang,Renhe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。