题名 | Adaptive Sparse Confidence-Weighted Learning for Online Feature Selection |
作者 | |
通讯作者 | Liu, Yanbin |
发表日期 | 2019
|
会议名称 | 33rd AAAI Conference on Artificial Intelligence / 31st Innovative Applications of Artificial Intelligence Conference / 9th AAAI Symposium on Educational Advances in Artificial Intelligence
|
ISSN | 2159-5399
|
EISSN | 2374-3468
|
会议录名称 | |
页码 | 4408-4415
|
会议日期 | JAN 27-FEB 01, 2019
|
会议地点 | null,Honolulu,HI
|
出版地 | 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
|
出版者 | |
摘要 | In this paper, we propose a new online feature selection algorithm for streaming data. We aim to focus on the following two problems which remain unaddressed in literature. First, most existing online feature selection algorithms merely utilize the first-order information of the data streams, regardless of the fact that second-order information explores the correlations between features and significantly improves the performance. Second, most online feature selection algorithms are based on the balanced data presumption, which is not true in many real-world applications. For example, in fraud detection, the number of positive examples are much less than negative examples because most cases are not fraud. The balanced assumption will make the selected features biased towards the majority class and fail to detect the fraud cases. We propose an Adaptive Sparse Confidence-Weighted (ASCW) algorithm to solve the aforementioned two problems. We first introduce an l(0)-norm constraint into the second-order confidence-weighted (CW) learning for feature selection. Then the original loss is substituted with a cost-sensitive loss function to address the imbalanced data issue. Furthermore, our algorithm maintains multiple sparse CW learner with the corresponding cost vector to dynamically select an optimal cost. We theoretically enhance the theory of sparse CW learning and analyze the performance behavior in F-measure. Empirical studies show the superior performance over the state-of-the-art online learning methods in the online-batch setting. |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | NSFC[U1509206]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000485292604053
|
EI入藏号 | 20203509101560
|
EI主题词 | E-learning
; Crime
; Learning systems
|
EI分类号 | Social Sciences:971
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:9
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24513 |
专题 | 南方科技大学 |
作者单位 | 1.Southern Univ Sci & Technol, SUSTech UTS Joint Ctr CIS, Shenzhen, Peoples R China 2.Univ Technol Sydney, Ctr Artificial Intelligence, Sydney, NSW, Australia 3.Tianjin Univ, Coll Intelligence & Comp, Tianjin, Peoples R China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Liu, Yanbin,Yan, Yan,Chen, Ling,et al. Adaptive Sparse Confidence-Weighted Learning for Online Feature Selection[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2019:4408-4415.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论