中文版 | English
题名

Adaptive Sparse Confidence-Weighted Learning for Online Feature Selection

作者
通讯作者Liu, Yanbin
发表日期
2019
会议名称
33rd AAAI Conference on Artificial Intelligence / 31st Innovative Applications of Artificial Intelligence Conference / 9th AAAI Symposium on Educational Advances in Artificial Intelligence
ISSN
2159-5399
EISSN
2374-3468
会议录名称
页码
4408-4415
会议日期
JAN 27-FEB 01, 2019
会议地点
null,Honolulu,HI
出版地
2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
出版者
摘要
In this paper, we propose a new online feature selection algorithm for streaming data. We aim to focus on the following two problems which remain unaddressed in literature. First, most existing online feature selection algorithms merely utilize the first-order information of the data streams, regardless of the fact that second-order information explores the correlations between features and significantly improves the performance. Second, most online feature selection algorithms are based on the balanced data presumption, which is not true in many real-world applications. For example, in fraud detection, the number of positive examples are much less than negative examples because most cases are not fraud. The balanced assumption will make the selected features biased towards the majority class and fail to detect the fraud cases. We propose an Adaptive Sparse Confidence-Weighted (ASCW) algorithm to solve the aforementioned two problems. We first introduce an l(0)-norm constraint into the second-order confidence-weighted (CW) learning for feature selection. Then the original loss is substituted with a cost-sensitive loss function to address the imbalanced data issue. Furthermore, our algorithm maintains multiple sparse CW learner with the corresponding cost vector to dynamically select an optimal cost. We theoretically enhance the theory of sparse CW learning and analyze the performance behavior in F-measure. Empirical studies show the superior performance over the state-of-the-art online learning methods in the online-batch setting.
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
NSFC[U1509206]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号
WOS:000485292604053
EI入藏号
20203509101560
EI主题词
E-learning ; Crime ; Learning systems
EI分类号
Social Sciences:971
来源库
Web of Science
引用统计
被引频次[WOS]:9
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/24513
专题南方科技大学
作者单位
1.Southern Univ Sci & Technol, SUSTech UTS Joint Ctr CIS, Shenzhen, Peoples R China
2.Univ Technol Sydney, Ctr Artificial Intelligence, Sydney, NSW, Australia
3.Tianjin Univ, Coll Intelligence & Comp, Tianjin, Peoples R China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Liu, Yanbin,Yan, Yan,Chen, Ling,et al. Adaptive Sparse Confidence-Weighted Learning for Online Feature Selection[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2019:4408-4415.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Yanbin]的文章
[Yan, Yan]的文章
[Chen, Ling]的文章
百度学术
百度学术中相似的文章
[Liu, Yanbin]的文章
[Yan, Yan]的文章
[Chen, Ling]的文章
必应学术
必应学术中相似的文章
[Liu, Yanbin]的文章
[Yan, Yan]的文章
[Chen, Ling]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。