题名 | Reinforcement Learning based Task Offloading and Take-back in Vehicle Platoon Networks |
作者 | |
通讯作者 | Ma, Xiaoting |
DOI | |
发表日期 | 2019
|
ISSN | 2164-7038
|
ISBN | 978-1-7281-2374-5
|
会议录名称 | |
页码 | 1-6
|
会议日期 | 20-24 May 2019
|
会议地点 | Shanghai, China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | In this paper, a platoon-assisted vehicular edge computing (I'VEC) system is proposed to enhance the efficiency and success of offloading, in which task flows can be migrated to the platoon members. Due to the speed change of Intelligent Connected Vehicles (ICVs) in the platoon, a task offloading and take-back scheme is proposed which can avoid task processing failures by resulting in link disconnection. Considering the multitask offloading system, a multi-leader multi-follower Stackelberg game (MLMF-SG) is formulated to analyse the incentives for task flows and resource allocation for platoon members. In MLMFSG, task flows as the offloading service consumers are the leaders and the offloading ICVs as the offloading service providers are followers. Specially, we propose an optimization scheme based on Reinforcement Learning (RL) to tackle the price strategies of task flows, which maximizes the player revenues by jointly optimizing the price decision and computing resource allocation. Simulation results verify the relationships among offloading service consumers and providers and demonstrate the excellent adaptability of RI. algorithm. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Key Technology Research and Development Program of Jiangxi Province[20171BBE50057]
|
WOS研究方向 | Engineering
; Telecommunications
|
WOS类目 | Engineering, Electrical & Electronic
; Telecommunications
|
WOS记录号 | WOS:000484917800081
|
EI入藏号 | 20193207296531
|
EI主题词 | Economics
; Machine Learning
; Resource Allocation
; Vehicles
|
EI分类号 | Artificial Intelligence:723.4
; Management:912.2
; Social Sciences:971
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8756836 |
引用统计 |
被引频次[WOS]:6
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24515 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China 2.East China Jiaotong Univ, Sch Informat Engn, Nanchang 330013, Jiangxi, Peoples R China 3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China |
推荐引用方式 GB/T 7714 |
Ma, Xiaoting,Zhao, Junhui,Li, Qiuping,et al. Reinforcement Learning based Task Offloading and Take-back in Vehicle Platoon Networks[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2019:1-6.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论