中文版 | English
题名

Reinforcement Learning based Task Offloading and Take-back in Vehicle Platoon Networks

作者
通讯作者Ma, Xiaoting
DOI
发表日期
2019
ISSN
2164-7038
ISBN
978-1-7281-2374-5
会议录名称
页码
1-6
会议日期
20-24 May 2019
会议地点
Shanghai, China
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

In this paper, a platoon-assisted vehicular edge computing (I'VEC) system is proposed to enhance the efficiency and success of offloading, in which task flows can be migrated to the platoon members. Due to the speed change of Intelligent Connected Vehicles (ICVs) in the platoon, a task offloading and take-back scheme is proposed which can avoid task processing failures by resulting in link disconnection. Considering the multitask offloading system, a multi-leader multi-follower Stackelberg game (MLMF-SG) is formulated to analyse the incentives for task flows and resource allocation for platoon members. In MLMFSG, task flows as the offloading service consumers are the leaders and the offloading ICVs as the offloading service providers are followers. Specially, we propose an optimization scheme based on Reinforcement Learning (RL) to tackle the price strategies of task flows, which maximizes the player revenues by jointly optimizing the price decision and computing resource allocation. Simulation results verify the relationships among offloading service consumers and providers and demonstrate the excellent adaptability of RI. algorithm.

关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
Key Technology Research and Development Program of Jiangxi Province[20171BBE50057]
WOS研究方向
Engineering ; Telecommunications
WOS类目
Engineering, Electrical & Electronic ; Telecommunications
WOS记录号
WOS:000484917800081
EI入藏号
20193207296531
EI主题词
Economics ; Machine Learning ; Resource Allocation ; Vehicles
EI分类号
Artificial Intelligence:723.4 ; Management:912.2 ; Social Sciences:971
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8756836
引用统计
被引频次[WOS]:6
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/24515
专题工学院_电子与电气工程系
作者单位
1.Beijing Jiaotong Univ, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
2.East China Jiaotong Univ, Sch Informat Engn, Nanchang 330013, Jiangxi, Peoples R China
3.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Ma, Xiaoting,Zhao, Junhui,Li, Qiuping,et al. Reinforcement Learning based Task Offloading and Take-back in Vehicle Platoon Networks[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2019:1-6.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ma, Xiaoting]的文章
[Zhao, Junhui]的文章
[Li, Qiuping]的文章
百度学术
百度学术中相似的文章
[Ma, Xiaoting]的文章
[Zhao, Junhui]的文章
[Li, Qiuping]的文章
必应学术
必应学术中相似的文章
[Ma, Xiaoting]的文章
[Zhao, Junhui]的文章
[Li, Qiuping]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。