题名 | Unsupervised Feature Selection by Pareto Optimization |
作者 | |
通讯作者 | Feng, Chao |
发表日期 | 2019
|
会议录名称 | |
页码 | 3534-3541
|
出版地 | 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
|
出版者 | |
摘要 | Dimensionality reduction is often employed to deal with the data with a huge number of features, which can be generally divided into two categories: feature transformation and feature selection. Due to the interpretability, the efficiency during inference and the abundance of unlabeled data, unsupervised feature selection has attracted much attention. In this paper, we consider its natural formulation, column subset selection (CSS), which is to minimize the reconstruction error of a data matrix by selecting a subset of features. We propose an anytime randomized iterative approach POCSS, which minimizes the reconstruction error and the number of selected features simultaneously. Its approximation guarantee is well bounded. Empirical results exhibit the superior performance of POCSS over the state-of-the-art algorithms. |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | NSFC[61603367]
; NSFC[61672478]
; NSFC[2016QNRC001]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000485292603068
|
EI入藏号 | 20203509102159
|
EI主题词 | Iterative methods
; Metadata
; Multiobjective optimization
; Pareto principle
|
EI分类号 | Optimization Techniques:921.5
; Numerical Methods:921.6
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:18
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24517 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Univ Sci & Technol China, Sch Comp Sci & Technol, Anhui Prov Key Lab Big Data Anal & Applicat, Hefei 230027, Anhui, Peoples R China 2.Southern Univ Sci & Technol, Shenzhen Key Lab Computat Intelligence, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China |
推荐引用方式 GB/T 7714 |
Feng, Chao,Qian, Chao,Tang, Ke. Unsupervised Feature Selection by Pareto Optimization[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2019:3534-3541.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论