中文版 | English
题名

NON-LOCAL SELF-ATTENTION STRUCTURE FOR FUNCTION APPROXIMATION IN DEEP REINFORCEMENT LEARNING

作者
通讯作者Hu, Guangwu
DOI
发表日期
2019
ISSN
1520-6149
ISBN
978-1-4799-8132-8
会议录名称
页码
3042-3046
会议日期
12-17 May 2019
会议地点
Brighton, UK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Reinforcement learning is a framework to make sequential decisions. The combination with deep neural networks further improves the ability of this framework. Convolutional nerual networks make it possible to make sequential decisions based on raw pixels information directly and make reinforcement learning achieve satisfying performances in series of tasks. However, convolutional neural networks still have own limitations in representing geometric patterns and long-term dependencies that occur consistently in state inputs. To tackle with the limitation, we propose the self-attention architecture to augment the original network. It provides a better balance between ability to model long-range dependencies and computational efficiency. Experiments on Atari games illustrate that self-attention structure is significantly effective for function approximation in deep reinforcement learning.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
RD Program of Shenzhen[JCYJ20160531174259309] ; RD Program of Shenzhen[JCYJ20170307153032483] ; RD Program of Shenzhen[JCYJ20160331184440545] ; RD Program of Shenzhen[JCYJ20170307153157440] ; RD Program of Shenzhen[JCYJ 20170817115335418]
WOS研究方向
Acoustics ; Engineering
WOS类目
Acoustics ; Engineering, Electrical & Electronic
WOS记录号
WOS:000482554003053
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8682832
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/24519
专题南方科技大学
未来网络研究院
作者单位
1.Tsinghua Univ, Beijing, Peoples R China
2.Shenzhen Inst Informat Technol, Sch Comp Sci, Shenzhen, Peoples R China
3.Southern Univ Sci & Technol, Pengcheng Lab, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Wang, Zhixiang,Xiao, Xi,Hu, Guangwu,et al. NON-LOCAL SELF-ATTENTION STRUCTURE FOR FUNCTION APPROXIMATION IN DEEP REINFORCEMENT LEARNING[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2019:3042-3046.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Zhixiang]的文章
[Xiao, Xi]的文章
[Hu, Guangwu]的文章
百度学术
百度学术中相似的文章
[Wang, Zhixiang]的文章
[Xiao, Xi]的文章
[Hu, Guangwu]的文章
必应学术
必应学术中相似的文章
[Wang, Zhixiang]的文章
[Xiao, Xi]的文章
[Hu, Guangwu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。