题名 | NON-LOCAL SELF-ATTENTION STRUCTURE FOR FUNCTION APPROXIMATION IN DEEP REINFORCEMENT LEARNING |
作者 | |
通讯作者 | Hu, Guangwu |
DOI | |
发表日期 | 2019
|
ISSN | 1520-6149
|
ISBN | 978-1-4799-8132-8
|
会议录名称 | |
页码 | 3042-3046
|
会议日期 | 12-17 May 2019
|
会议地点 | Brighton, UK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Reinforcement learning is a framework to make sequential decisions. The combination with deep neural networks further improves the ability of this framework. Convolutional nerual networks make it possible to make sequential decisions based on raw pixels information directly and make reinforcement learning achieve satisfying performances in series of tasks. However, convolutional neural networks still have own limitations in representing geometric patterns and long-term dependencies that occur consistently in state inputs. To tackle with the limitation, we propose the self-attention architecture to augment the original network. It provides a better balance between ability to model long-range dependencies and computational efficiency. Experiments on Atari games illustrate that self-attention structure is significantly effective for function approximation in deep reinforcement learning. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | RD Program of Shenzhen[JCYJ20160531174259309]
; RD Program of Shenzhen[JCYJ20170307153032483]
; RD Program of Shenzhen[JCYJ20160331184440545]
; RD Program of Shenzhen[JCYJ20170307153157440]
; RD Program of Shenzhen[JCYJ 20170817115335418]
|
WOS研究方向 | Acoustics
; Engineering
|
WOS类目 | Acoustics
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000482554003053
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8682832 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24519 |
专题 | 南方科技大学 未来网络研究院 |
作者单位 | 1.Tsinghua Univ, Beijing, Peoples R China 2.Shenzhen Inst Informat Technol, Sch Comp Sci, Shenzhen, Peoples R China 3.Southern Univ Sci & Technol, Pengcheng Lab, Shenzhen, Peoples R China |
推荐引用方式 GB/T 7714 |
Wang, Zhixiang,Xiao, Xi,Hu, Guangwu,et al. NON-LOCAL SELF-ATTENTION STRUCTURE FOR FUNCTION APPROXIMATION IN DEEP REINFORCEMENT LEARNING[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2019:3042-3046.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论