题名 | Dual Distribution Alignment Network for Generalizable Person Re-Identification |
作者 | |
通讯作者 | Dai, Pingyang |
发表日期 | 2021
|
会议名称 | 35th AAAI Conference on Artificial Intelligence / 33rd Conference on Innovative Applications of Artificial Intelligence / 11th Symposium on Educational Advances in Artificial Intelligence
|
ISSN | 2159-5399
|
EISSN | 2374-3468
|
会议录名称 | |
卷号 | 35
|
页码 | 1054-1062
|
会议日期 | FEB 02-09, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
|
出版者 | |
摘要 | Domain generalization (DG) offers a preferable real-world setting for Person Re-Identification (Re-ID), which trains a model using multiple source domain datasets and expects it to perform well in an unseen target domain without any model updating. Unfortunately, most DG approaches are designed explicitly for classification tasks, which fundamentally differs from the retrieval task Re-ID. Moreover, existing applications of DG in Re-ID cannot correctly handle the massive variation among Re-ID datasets. In this paper, we identify two fundamental challenges in DG for Person Re-ID: domain-wise variations and identity-wise similarities. To this end, we propose an end-to-end Dual Distribution Alignment Network (DDAN) to learn domain-invariant features with dual-level constraints: the domain-wise adversarial feature learning and the identity-wise similarity enhancement. These constraints effectively reduce the domain-shift among multiple source domains further while agreeing to real-world scenarios. We evaluate our method in a large-scale DG Re-ID benchmark and compare it with various cutting-edge DG approaches. Quantitative results show that DDAN achieves state-of-the-art performance. |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Science Fund for Distinguished Young[62025603]
|
WOS研究方向 | Computer Science
; Education & Educational Research
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
; Education, Scientific Disciplines
|
WOS记录号 | WOS:000680423501016
|
EI入藏号 | 20222012115628
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:21
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/245237 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Xiamen Univ, Sch Informat, Dept Artificial Intelligence, Media Analyt & Comp Lab, Xiamen, Peoples R China 2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China 3.Huawei Tech, Noahs Ark Lab, Shenzhen, Peoples R China 4.Zhengzhou Univ, Sch Informat Engn, Zhengzhou, Henan, Peoples R China 5.Huawei Tech, Cloud & AI, Shenzhen, Peoples R China 6.Xiamen Univ, Inst Artificial Intelligence, Xiamen, Peoples R China |
推荐引用方式 GB/T 7714 |
Chen, Peixian,Dai, Pingyang,Liu, Jianzhuang,et al. Dual Distribution Alignment Network for Generalizable Person Re-Identification[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2021:1054-1062.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论