中文版 | English
题名

Dual Distribution Alignment Network for Generalizable Person Re-Identification

作者
通讯作者Dai, Pingyang
发表日期
2021
会议名称
35th AAAI Conference on Artificial Intelligence / 33rd Conference on Innovative Applications of Artificial Intelligence / 11th Symposium on Educational Advances in Artificial Intelligence
ISSN
2159-5399
EISSN
2374-3468
会议录名称
卷号
35
页码
1054-1062
会议日期
FEB 02-09, 2021
会议地点
null,null,ELECTR NETWORK
出版地
2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
出版者
摘要
Domain generalization (DG) offers a preferable real-world setting for Person Re-Identification (Re-ID), which trains a model using multiple source domain datasets and expects it to perform well in an unseen target domain without any model updating. Unfortunately, most DG approaches are designed explicitly for classification tasks, which fundamentally differs from the retrieval task Re-ID. Moreover, existing applications of DG in Re-ID cannot correctly handle the massive variation among Re-ID datasets. In this paper, we identify two fundamental challenges in DG for Person Re-ID: domain-wise variations and identity-wise similarities. To this end, we propose an end-to-end Dual Distribution Alignment Network (DDAN) to learn domain-invariant features with dual-level constraints: the domain-wise adversarial feature learning and the identity-wise similarity enhancement. These constraints effectively reduce the domain-shift among multiple source domains further while agreeing to real-world scenarios. We evaluate our method in a large-scale DG Re-ID benchmark and compare it with various cutting-edge DG approaches. Quantitative results show that DDAN achieves state-of-the-art performance.
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Science Fund for Distinguished Young[62025603]
WOS研究方向
Computer Science ; Education & Educational Research
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Education, Scientific Disciplines
WOS记录号
WOS:000680423501016
EI入藏号
20222012115628
来源库
Web of Science
引用统计
被引频次[WOS]:21
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/245237
专题工学院_计算机科学与工程系
作者单位
1.Xiamen Univ, Sch Informat, Dept Artificial Intelligence, Media Analyt & Comp Lab, Xiamen, Peoples R China
2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
3.Huawei Tech, Noahs Ark Lab, Shenzhen, Peoples R China
4.Zhengzhou Univ, Sch Informat Engn, Zhengzhou, Henan, Peoples R China
5.Huawei Tech, Cloud & AI, Shenzhen, Peoples R China
6.Xiamen Univ, Inst Artificial Intelligence, Xiamen, Peoples R China
推荐引用方式
GB/T 7714
Chen, Peixian,Dai, Pingyang,Liu, Jianzhuang,et al. Dual Distribution Alignment Network for Generalizable Person Re-Identification[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2021:1054-1062.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Peixian]的文章
[Dai, Pingyang]的文章
[Liu, Jianzhuang]的文章
百度学术
百度学术中相似的文章
[Chen, Peixian]的文章
[Dai, Pingyang]的文章
[Liu, Jianzhuang]的文章
必应学术
必应学术中相似的文章
[Chen, Peixian]的文章
[Dai, Pingyang]的文章
[Liu, Jianzhuang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。