中文版 | English
题名

A Unified Multi-Scenario Attacking Network for Visual Object Tracking

作者
通讯作者Zheng, Feng
发表日期
2021
会议名称
35th AAAI Conference on Artificial Intelligence / 33rd Conference on Innovative Applications of Artificial Intelligence / 11th Symposium on Educational Advances in Artificial Intelligence
ISSN
2159-5399
EISSN
2374-3468
会议录名称
卷号
35
页码
1097-1104
会议日期
FEB 02-09, 2021
会议地点
null,null,ELECTR NETWORK
出版地
2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
出版者
摘要
Existing methods of adversarial attacks successfully generate adversarial examples to confuse Deep Neural Networks (DNNs) of image classification and object detection, resulting in wrong predictions. However, these methods are difficult to attack models of video object tracking, because the tracking algorithms could handle sequential information across video frames and the categories of targets tracked are normally unknown in advance. In this paper, we propose a Unified and Effective Network, named UEN, to attack visual object tracking models. There are several appealing characteristics of UEN: (1) UEN could produce various invisible adversarial perturbations according to different attack settings by using only one simple end-to-end network with three ingenious loss function; (2) UEN could generate general visible adversarial patch patterns to attack the advanced trackers in the real-world; (3) Extensive experiments show that UEN is able to attack many state-of-the-art trackers effectively (e.g. SiamRPN-based networks and DiMP) on popular tracking datasets including OTB100, UAV123, and GOT10K, making online real-time attacks possible. The attack results outperform the introduced baseline in terms of attacking ability and attacking efficiency.
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[61972188]
WOS研究方向
Computer Science ; Education & Educational Research
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Education, Scientific Disciplines
WOS记录号
WOS:000680423501021
EI入藏号
20222012114887
EI主题词
Aircraft detection ; Object detection
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Radar Systems and Equipment:716.2 ; Data Processing and Image Processing:723.2
来源库
Web of Science
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/245238
专题工学院_计算机科学与工程系
作者单位
1.Chinese Univ Hong Kong, Hong Kong, Peoples R China
2.Tencent, WeChat AI, Shenzhen, Guangdong, Peoples R China
3.Peking Univ, Beijing, Peoples R China
4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China
5.Univ Hong Kong, Hong Kong, Peoples R China
6.Futurewei Technol, Lab MAPLE, Santa Clara, CA USA
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Chen, Xuesong,Fu, Canmiao,Zheng, Feng,et al. A Unified Multi-Scenario Attacking Network for Visual Object Tracking[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2021:1097-1104.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Xuesong]的文章
[Fu, Canmiao]的文章
[Zheng, Feng]的文章
百度学术
百度学术中相似的文章
[Chen, Xuesong]的文章
[Fu, Canmiao]的文章
[Zheng, Feng]的文章
必应学术
必应学术中相似的文章
[Chen, Xuesong]的文章
[Fu, Canmiao]的文章
[Zheng, Feng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。