中文版 | English
题名

Using machine learning to reveal spatiotemporal complexity and driving forces of water quality changes in Hong Kong marine water

作者
通讯作者Tian,Yong; Zheng,Chunmiao
发表日期
2021-12-01
DOI
发表期刊
ISSN
0022-1694
EISSN
1879-2707
卷号603
摘要

A self-organizing map (SOM), which is an unsupervised neural network, is used to explore the spatiotemporal variability of water quality in Hong Kong marine water areas based on 31 years of monitoring data (1986–2016). In this study, three types of SOMs, referred to as s-v, s-t and t-s SOM, respectively, are applied to the multivariate marine water quality data, and principal component analysis (PCA) is used to help the clustering of SOM neurons and component planes. The major findings revealed by the spatiotemporal SOM analyses include the following: a) Hong Kong marine water areas can be classified into five regions with distinctive water quality characteristics over the long term, b) the spatiotemporal variations in chlorophyll-a (Chl-a) and NO are greatly affected by ocean currents and nutrients from Pearl River discharge, c) marine water quality is significantly affected by water control projects, e.g., the Hong Kong Harbor Area Treatment Scheme (HATS), and d) nitrogen (N) is the limiting nutrient for phytoplankton growth in winter, west and south of the Hong Kong marine regions, while phosphorus (P) is the limiting nutrient in summer, owing to the massive discharge of the Pearl River that contain NO. Furthermore, the severe pollution in Deep Bay with high levels of Chl-a, nutrients and fecal coliform (FC) deserves immediate attention from the governments. The results of this study prove that combined spatiotemporal SOM analyses provide a powerful tool to identify spatiotemporal patterns in water quality data and to reveal the driving forces behind water quality changes. This study presents the first attempt to apply SOMs to water quality analysis at both spatial and temporal domains.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[41890852,42071244,41861124003]
WOS研究方向
Engineering ; Geology ; Water Resources
WOS类目
Engineering, Civil ; Geosciences, Multidisciplinary ; Water Resources
WOS记录号
WOS:000706313000028
出版者
EI入藏号
20213510824448
EI主题词
Classification (of information) ; Conformal mapping ; Machine learning ; Nutrients ; Ocean currents ; Principal component analysis ; Quality control ; River pollution ; Self organizing maps
EI分类号
Water Analysis:445.2 ; Water Pollution:453 ; Seawater, Tides and Waves:471.4 ; Information Theory and Signal Processing:716.1 ; Artificial Intelligence:723.4 ; Information Sources and Analysis:903.1 ; Quality Assurance and Control:913.3 ; Mathematical Statistics:922.2
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85113362290
来源库
Scopus
引用统计
被引频次[WOS]:20
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/245247
专题工学院_环境科学与工程学院
作者单位
1.Institute of Water Sciences,College of Engineering,Peking University,Beijing,100871,China
2.State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control,School of Environmental Science & Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Shenzhen Municipal Engineering Lab of Environmental IoT Technologies,Southern University of Science and Technology,Shenzhen,518055,China
4.Department of Civil Engineering,University of Hong Kong,Hong Kong
第一作者单位环境科学与工程学院
通讯作者单位环境科学与工程学院;  南方科技大学
推荐引用方式
GB/T 7714
Yu,Jiang,Tian,Yong,Wang,Xiaoli,et al. Using machine learning to reveal spatiotemporal complexity and driving forces of water quality changes in Hong Kong marine water[J]. JOURNAL OF HYDROLOGY,2021,603.
APA
Yu,Jiang,Tian,Yong,Wang,Xiaoli,&Zheng,Chunmiao.(2021).Using machine learning to reveal spatiotemporal complexity and driving forces of water quality changes in Hong Kong marine water.JOURNAL OF HYDROLOGY,603.
MLA
Yu,Jiang,et al."Using machine learning to reveal spatiotemporal complexity and driving forces of water quality changes in Hong Kong marine water".JOURNAL OF HYDROLOGY 603(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
1-s2.0-S002216942100(17073KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yu,Jiang]的文章
[Tian,Yong]的文章
[Wang,Xiaoli]的文章
百度学术
百度学术中相似的文章
[Yu,Jiang]的文章
[Tian,Yong]的文章
[Wang,Xiaoli]的文章
必应学术
必应学术中相似的文章
[Yu,Jiang]的文章
[Tian,Yong]的文章
[Wang,Xiaoli]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。