中文版 | English
题名

Deep-learning based discovery of partial differential equations in integral form from sparse and noisy data

作者
通讯作者Zhang,Dongxiao
发表日期
2021-11-15
DOI
发表期刊
ISSN
0021-9991
EISSN
1090-2716
卷号445
摘要
Data-driven discovery of partial differential equations (PDEs) has attracted increasing attention in recent years. Although significant progress has been made, certain unresolved issues remain. For example, for PDEs with high-order derivatives, the performance of existing methods is unsatisfactory, especially when the data are sparse and noisy. It is also difficult to discover heterogeneous parametric PDEs where heterogeneous parameters are embedded in the partial differential operators. In this work, a new framework combining deep-learning and integral form is proposed to handle the above-mentioned problems simultaneously, and improve the accuracy and stability of PDE discovery. In the framework, a deep neural network is firstly trained with observation data to generate meta-data and calculate derivatives. Then, a unified integral form is defined, and the genetic algorithm is employed to discover the best structure. Finally, the values of parameters are calculated, and whether the parameters are constants or variables is identified. Numerical experiments proved that our proposed algorithm is more robust to noise and more accurate compared with existing methods due to the utilization of integral form. Our proposed algorithm is also able to discover PDEs with high-order derivatives or heterogeneous parameters accurately with sparse and noisy data.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[51520105005,"U1663208"] ; National Science and Technology Major Project of China["2017ZX05009-005","2017ZX05049-003"]
WOS研究方向
Computer Science ; Physics
WOS类目
Computer Science, Interdisciplinary Applications ; Physics, Mathematical
WOS记录号
WOS:000722631000004
出版者
EI入藏号
20213510833261
EI主题词
Deep neural networks ; Genetic algorithms ; Mathematical operators ; Numerical methods ; Partial differential equations
EI分类号
Calculus:921.2 ; Numerical Methods:921.6
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85113587915
来源库
Scopus
引用统计
被引频次[WOS]:17
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/245249
专题工学院_环境科学与工程学院
作者单位
1.BIC-ESAT,ERE,SKLTCS,College of Engineering,Peking University,Beijing,100871,China
2.Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control,School of Environmental Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
4.Intelligent Energy Lab,Peng Cheng Laboratory,Shenzhen,518000,China
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Xu,Hao,Zhang,Dongxiao,Wang,Nanzhe. Deep-learning based discovery of partial differential equations in integral form from sparse and noisy data[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2021,445.
APA
Xu,Hao,Zhang,Dongxiao,&Wang,Nanzhe.(2021).Deep-learning based discovery of partial differential equations in integral form from sparse and noisy data.JOURNAL OF COMPUTATIONAL PHYSICS,445.
MLA
Xu,Hao,et al."Deep-learning based discovery of partial differential equations in integral form from sparse and noisy data".JOURNAL OF COMPUTATIONAL PHYSICS 445(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu,Hao]的文章
[Zhang,Dongxiao]的文章
[Wang,Nanzhe]的文章
百度学术
百度学术中相似的文章
[Xu,Hao]的文章
[Zhang,Dongxiao]的文章
[Wang,Nanzhe]的文章
必应学术
必应学术中相似的文章
[Xu,Hao]的文章
[Zhang,Dongxiao]的文章
[Wang,Nanzhe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。