题名 | First-order derivatives of principal and main invariants of gravity gradient tensor of the tesseroid and spherical shell |
作者 | |
通讯作者 | Ran,Jiangjun |
发表日期 | 2021-09-01
|
DOI | |
发表期刊 | |
ISSN | 0949-7714
|
EISSN | 1432-1394
|
卷号 | 95期号:9页码:102 |
摘要 | The invariants of gravity (or gravitational) gradient tensor can be applied as the additional internal parameters for the gravity gradient tensor, which have been widely used in the recovery of the global gravity field models in geodesy, interpretation of geophysical properties in geophysics, and gravity matching in navigation and positioning. In this contribution, we provide the general formulae of the first-order derivatives of principal and main invariants of gravity gradient tensor (FPIGGT and FMIGGT), where their physical meaning is the change rate of the invariants of gravity gradient tensor, and their expressions consist entirely of gravity gradient tensor and gravitational curvatures (i.e. the third-order derivatives of gravitational potential). Taking the mass bodies (i.e. tesseroid and spherical shell) in spatial domain as examples, the expressions for the FPIGGT and FMIGGT are derived, respectively. The classic numerical experiments with the summation of gravitational effects of tesseroids discretizing the entire spherical shell are performed to investigate the influences of the geocentric distance and latitude using different grid resolutions on the FPIGGT and principal invariants of gravity gradient tensor (PIGGT). Numerical experiments confirm the occurred very-near-area problem of the FPIGGT and PIGGT. The FPIGGT and PIGGT of the tesseroid using the Cartesian integral kernels can avoid the polar-singularity problem. Meanwhile, the finer the grid resolution, the smaller the relative approximation errors of the FPIGGT. The grid resolution lower than (or including) 1 × 1 at the satellite height of 260 km provides satisfactory results with the relative approximation errors of the FPIGGT and PIGGT in Log scale less than zero. The proposed first-order derivatives of principal and main invariants of gravity gradient tensor will provide additional knowledge of the gravity field for geodesy, geophysics, and related geoscience applications. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
WOS记录号 | WOS:000690904000001
|
ESI学科分类 | GEOSCIENCES
|
Scopus记录号 | 2-s2.0-85113498213
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/245262 |
专题 | 理学院_地球与空间科学系 |
作者单位 | 1.Department of Earth and Space Sciences,Southern University of Science and Technology,Shenzhen,518055,China 2.School of Geodesy and Geomatics,Wuhan University,Wuhan,430079,China 3.State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan,430079,China 4.School of Geospatial Engineering and Science,Sun Yat-Sen University,Zhuhai,519082,China |
第一作者单位 | 地球与空间科学系 |
通讯作者单位 | 地球与空间科学系 |
第一作者的第一单位 | 地球与空间科学系 |
推荐引用方式 GB/T 7714 |
Deng,Xiao Le,Shen,Wen Bin,Yang,Meng,et al. First-order derivatives of principal and main invariants of gravity gradient tensor of the tesseroid and spherical shell[J]. JOURNAL OF GEODESY,2021,95(9):102.
|
APA |
Deng,Xiao Le,Shen,Wen Bin,Yang,Meng,&Ran,Jiangjun.(2021).First-order derivatives of principal and main invariants of gravity gradient tensor of the tesseroid and spherical shell.JOURNAL OF GEODESY,95(9),102.
|
MLA |
Deng,Xiao Le,et al."First-order derivatives of principal and main invariants of gravity gradient tensor of the tesseroid and spherical shell".JOURNAL OF GEODESY 95.9(2021):102.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Deng.et.al.2021.JG.p(1160KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论