中文版 | English
题名

First-order derivatives of principal and main invariants of gravity gradient tensor of the tesseroid and spherical shell

作者
通讯作者Ran,Jiangjun
发表日期
2021-09-01
DOI
发表期刊
ISSN
0949-7714
EISSN
1432-1394
卷号95期号:9页码:102
摘要

The invariants of gravity (or gravitational) gradient tensor can be applied as the additional internal parameters for the gravity gradient tensor, which have been widely used in the recovery of the global gravity field models in geodesy, interpretation of geophysical properties in geophysics, and gravity matching in navigation and positioning. In this contribution, we provide the general formulae of the first-order derivatives of principal and main invariants of gravity gradient tensor (FPIGGT and FMIGGT), where their physical meaning is the change rate of the invariants of gravity gradient tensor, and their expressions consist entirely of gravity gradient tensor and gravitational curvatures (i.e. the third-order derivatives of gravitational potential). Taking the mass bodies (i.e. tesseroid and spherical shell) in spatial domain as examples, the expressions for the FPIGGT and FMIGGT are derived, respectively. The classic numerical experiments with the summation of gravitational effects of tesseroids discretizing the entire spherical shell are performed to investigate the influences of the geocentric distance and latitude using different grid resolutions on the FPIGGT and principal invariants of gravity gradient tensor (PIGGT). Numerical experiments confirm the occurred very-near-area problem of the FPIGGT and PIGGT. The FPIGGT and PIGGT of the tesseroid using the Cartesian integral kernels can avoid the polar-singularity problem. Meanwhile, the finer the grid resolution, the smaller the relative approximation errors of the FPIGGT. The grid resolution lower than (or including) 1 × 1 at the satellite height of 260 km provides satisfactory results with the relative approximation errors of the FPIGGT and PIGGT in Log scale less than zero. The proposed first-order derivatives of principal and main invariants of gravity gradient tensor will provide additional knowledge of the gravity field for geodesy, geophysics, and related geoscience applications.

关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
WOS记录号
WOS:000690904000001
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85113498213
来源库
Scopus
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/245262
专题理学院_地球与空间科学系
作者单位
1.Department of Earth and Space Sciences,Southern University of Science and Technology,Shenzhen,518055,China
2.School of Geodesy and Geomatics,Wuhan University,Wuhan,430079,China
3.State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan,430079,China
4.School of Geospatial Engineering and Science,Sun Yat-Sen University,Zhuhai,519082,China
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Deng,Xiao Le,Shen,Wen Bin,Yang,Meng,et al. First-order derivatives of principal and main invariants of gravity gradient tensor of the tesseroid and spherical shell[J]. JOURNAL OF GEODESY,2021,95(9):102.
APA
Deng,Xiao Le,Shen,Wen Bin,Yang,Meng,&Ran,Jiangjun.(2021).First-order derivatives of principal and main invariants of gravity gradient tensor of the tesseroid and spherical shell.JOURNAL OF GEODESY,95(9),102.
MLA
Deng,Xiao Le,et al."First-order derivatives of principal and main invariants of gravity gradient tensor of the tesseroid and spherical shell".JOURNAL OF GEODESY 95.9(2021):102.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Deng.et.al.2021.JG.p(1160KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Deng,Xiao Le]的文章
[Shen,Wen Bin]的文章
[Yang,Meng]的文章
百度学术
百度学术中相似的文章
[Deng,Xiao Le]的文章
[Shen,Wen Bin]的文章
[Yang,Meng]的文章
必应学术
必应学术中相似的文章
[Deng,Xiao Le]的文章
[Shen,Wen Bin]的文章
[Yang,Meng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。