题名 | PROSTATE SEGMENTATION USING Z-NET |
作者 | |
通讯作者 | Chen, Yifan; Tang, Xiaoying |
DOI | |
发表日期 | 2019
|
会议名称 | 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
|
ISSN | 19458452
|
ISBN | 978-1-5386-3642-8
|
会议录名称 | |
卷号 | 2019-April
|
页码 | 11-14
|
会议日期 | 2019
|
会议地点 | Venice, Italy
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | In this paper, we proposed a novel architecture of convolutional neural network (CNN), namely Z-net, for segmenting prostate from magnetic resonance images (MRIs). In the proposed Z-net, 5 pairs of Z-block and decoder Z-block with different sizes and numbers of feature maps were assembled in a way similar to that of U-net. The proposed architecture can capture more multi-level features by using concatenation and dense connection. A total of 45 training images were used to train the proposed Z-net and the evaluations were conducted qualitatively on 5 validation images and quantitatively on 30 testing images In addition, three approaches including pad and cut, 2D resize, and 3D resize for uniforming the size of samples were evaluated and compared. The experimental results demonstrated that the 2D resize is the most suitable approach for the proposed Z-net. Compared to the other two classical CNN architectures, the proposed method was observed with superior performance for segmenting prostate. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Shenzhen Science and Technology Innovation Committee funds[KQJSCX20160226193445]
|
WOS研究方向 | Engineering
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Engineering, Biomedical
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:000485040000003
|
EI入藏号 | 20193207270469
|
EI主题词 | Convolution
; Magnetic Resonance
; Magnetic Resonance Imaging
; Medical Imaging
; Network Architecture
; Neural Networks
; Urology
|
EI分类号 | Medicine And Pharmacology:461.6
; Magnetism: Basic Concepts And Phenomena:701.2
; Information Theory And Signal Processing:716.1
; Imaging Techniques:746
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8759554 |
引用统计 |
被引频次[WOS]:43
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24534 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China 2.Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China 3.Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou, Guangdong, Peoples R China 4.Univ Waikato, Fac Sci & Engn, Hamilton, New Zealand |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Zhang, Yue,Wu, Jiong,Chen, Wanli,et al. PROSTATE SEGMENTATION USING Z-NET[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2019:11-14.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
PROSTATE SEGMENTATIO(1132KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论