中文版 | English
题名

Automatic Web Testing Using Curiosity-Driven Reinforcement Learning

作者
通讯作者Xie, Xiaofei
DOI
发表日期
2021
会议名称
43rd IEEE/ACM International Conference on Software Engineering - Software Engineering in Practice (ICSE-SEIP) / 43rd ACM/IEEE International Conference on Software Engineering - New Ideas and Emerging Results (ICSE-NIER)
ISSN
0270-5257
ISBN
978-1-6654-0296-5
会议录名称
页码
423-435
会议日期
MAY 25-28, 2021
会议地点
null,null,ELECTR NETWORK
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要
Web testing has long been recognized as a notoriously difficult task. Even nowadays. web testing still heavily relies on manual efforts while automated web testing is far from achieving human-level performance. Key challenges in web testing include dynamic content update and deep bugs hiding under complicated user interactions and specific input values, which can only be triggered by certain action sequences in the huge search space. In this paper, we propose WebExplor, an automatic end-to-end web testing framework, to achieve an adaptive exploration of web applications. WebExplor adopts curiosity-driven reinforcement learning to generate high-quality action sequences (test cases) satisfying temporal logical relations. Besides. WebExplor incrementally builds an automaton during the online testing process, which provides high-level guidance to further improve the testing efficiency. We have conducted comprehensive evaluations of WebExplor on six real-world projects, a commercial SaaS web application, and performed an in-the-wild study of the top 50 web applications in the world. The results demonstrate that in most cases WebExplor can achieve significantly higher failure detection rate, code coverage and efficiency than existing state-of-the-art web testing techniques. WebExplor also detected 12 previously unknown failures in the commercial web application, which have been confirmed and fixed by the developers. Furthermore, our in-the-wild study further uncovered 3,466 exceptions and errors.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[U1836214]
WOS研究方向
Computer Science
WOS类目
Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号
WOS:000684601800035
EI入藏号
20213910949815
EI主题词
Efficiency ; Reinforcement learning ; Websites
EI分类号
Artificial Intelligence:723.4 ; Computer Applications:723.5 ; Production Engineering:913.1
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9402046
引用统计
被引频次[WOS]:30
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/245614
专题工学院_计算机科学与工程系
作者单位
1.Tianjin Univ, Tianjin, Peoples R China
2.Nanyang Technol Univ, Singapore, Singapore
3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen, Peoples R China
4.Kyushu Univ, Fukuoka, Japan
5.Tianjin Univ, Sch New Media & Commun, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Zheng, Yan,Liu, Yi,Xie, Xiaofei,et al. Automatic Web Testing Using Curiosity-Driven Reinforcement Learning[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2021:423-435.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zheng, Yan]的文章
[Liu, Yi]的文章
[Xie, Xiaofei]的文章
百度学术
百度学术中相似的文章
[Zheng, Yan]的文章
[Liu, Yi]的文章
[Xie, Xiaofei]的文章
必应学术
必应学术中相似的文章
[Zheng, Yan]的文章
[Liu, Yi]的文章
[Xie, Xiaofei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。