题名 | Automatic Web Testing Using Curiosity-Driven Reinforcement Learning |
作者 | |
通讯作者 | Xie, Xiaofei |
DOI | |
发表日期 | 2021
|
会议名称 | 43rd IEEE/ACM International Conference on Software Engineering - Software Engineering in Practice (ICSE-SEIP) / 43rd ACM/IEEE International Conference on Software Engineering - New Ideas and Emerging Results (ICSE-NIER)
|
ISSN | 0270-5257
|
ISBN | 978-1-6654-0296-5
|
会议录名称 | |
页码 | 423-435
|
会议日期 | MAY 25-28, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
|
出版者 | |
摘要 | Web testing has long been recognized as a notoriously difficult task. Even nowadays. web testing still heavily relies on manual efforts while automated web testing is far from achieving human-level performance. Key challenges in web testing include dynamic content update and deep bugs hiding under complicated user interactions and specific input values, which can only be triggered by certain action sequences in the huge search space. In this paper, we propose WebExplor, an automatic end-to-end web testing framework, to achieve an adaptive exploration of web applications. WebExplor adopts curiosity-driven reinforcement learning to generate high-quality action sequences (test cases) satisfying temporal logical relations. Besides. WebExplor incrementally builds an automaton during the online testing process, which provides high-level guidance to further improve the testing efficiency. We have conducted comprehensive evaluations of WebExplor on six real-world projects, a commercial SaaS web application, and performed an in-the-wild study of the top 50 web applications in the world. The results demonstrate that in most cases WebExplor can achieve significantly higher failure detection rate, code coverage and efficiency than existing state-of-the-art web testing techniques. WebExplor also detected 12 previously unknown failures in the commercial web application, which have been confirmed and fixed by the developers. Furthermore, our in-the-wild study further uncovered 3,466 exceptions and errors. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[U1836214]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Software Engineering
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000684601800035
|
EI入藏号 | 20213910949815
|
EI主题词 | Efficiency
; Reinforcement learning
; Websites
|
EI分类号 | Artificial Intelligence:723.4
; Computer Applications:723.5
; Production Engineering:913.1
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9402046 |
引用统计 |
被引频次[WOS]:30
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/245614 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Tianjin Univ, Tianjin, Peoples R China 2.Nanyang Technol Univ, Singapore, Singapore 3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Guangdong Prov Key Lab Brain Inspired Intelligent, Shenzhen, Peoples R China 4.Kyushu Univ, Fukuoka, Japan 5.Tianjin Univ, Sch New Media & Commun, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 |
Zheng, Yan,Liu, Yi,Xie, Xiaofei,et al. Automatic Web Testing Using Curiosity-Driven Reinforcement Learning[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2021:423-435.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论