题名 | Deep Learning Based Discrimination of Corneal Ulcer Patterns Using Fluorescein Staining Images |
作者 | |
DOI | |
发表日期 | 2020-12-05
|
会议录名称 | |
页码 | 126-129
|
摘要 | In this paper, we proposed an automatic pipeline for classifying three types of corneal ulcer patterns (point like, mixed, flaky). We first made use of H-channel related information in HSV space within cornea to perform corneal ulcers' coarse segmentation. This result was then sequentially classified using two binary classification models: 1) Point-like ulcer against mixed and flaky ulcer, and 2) mixed ulcer against flaky ulcer. The proposed pipeline was evaluated on 712 corneal ulcer images, with an accuracy of 0.858 and a kappa score of 0.796 having been obtained. We also investigated the performance of our proposed pipeline with different baseline network architectures, and identified Resnet101 to be the best-performing one. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20213610870635
|
EI主题词 | Diseases
; Network architecture
; Pipelines
|
EI分类号 | Pipe, Piping and Pipelines:619.1
|
Scopus记录号 | 2-s2.0-85114272405
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/245697 |
专题 | 工学院_电子与电气工程系 |
作者单位 | Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,China |
第一作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Wang,Zhonghua,Huang,Yijin,Lyu,Junyan,et al. Deep Learning Based Discrimination of Corneal Ulcer Patterns Using Fluorescein Staining Images[C],2020:126-129.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论