题名 | Anomaly Detection and Condition Monitoring of UAV Motors and Propellers |
作者 | |
通讯作者 | Hao, Qi |
DOI | |
发表日期 | 2018
|
ISSN | 21689229
|
ISBN | 978-1-5386-4708-0
|
会议录名称 | |
卷号 | 2018-October
|
页码 | 184-187
|
会议日期 | 28-31 Oct. 2018
|
会议地点 | New Delhi, India
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | An early detection of fault components is crucial for unmanned aerial vehicles (UAVs). The goal of this paper is to develop a monitoring system to early detect possible faults of UAV motors and propellers. Motor current signature analysis (MCSA) approach is used to analyze the stator current signals under different conditions. Then, fuzzy adaptive resonance (Fuzzy ART) neural network (NN), which is an unsupervised learning scheme, is employed to judge whether motors are operating in normal or faulty condition. In addition, the vibration signature analysis (VSA) technique is employed to monitor the UAV propellers. A Q-learning-based Fuzzy ARTMAP NN is used to learn extracted statistical features, and the Genetic algorithm (GA) is used to select an optimal subset of features through an off-line manner in order to reduce computational time. The experimental results validated the effectiveness of the proposed model in detecting faults of UAV motors and propellers as compared with CART, KNN, NB and SVM. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61773197]
|
WOS研究方向 | Engineering
; Remote Sensing
|
WOS类目 | Engineering, Electrical & Electronic
; Remote Sensing
|
WOS记录号 | WOS:000468199300048
|
EI入藏号 | 20190606463828
|
EI主题词 | Aircraft detection
; Antennas
; Arts computing
; Condition monitoring
; Fault detection
; Genetic algorithms
; Propellers
; Unmanned aerial vehicles (UAV)
; Vibration analysis
|
EI分类号 | Aircraft, General:652.1
; Radar Systems and Equipment:716.2
; Data Processing and Image Processing:723.2
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8589572 |
引用统计 |
被引频次[WOS]:51
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24579 |
专题 | 工学院_计算机科学与工程系 前沿与交叉科学研究院 |
作者单位 | Southern Univ Sci & Technol, Sch Comp Sci & Engn, Shenzhen 518055, Peoples R China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Pourpanah, Farhad,Zhang, Bin,Ma, Rui,et al. Anomaly Detection and Condition Monitoring of UAV Motors and Propellers[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2018:184-187.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论