题名 | Rate Adaptation of D2D Underlaying Downlink Massive MIMO Networks with Reinforcement Learning |
作者 | |
通讯作者 | Zhang, Zezhong |
DOI | |
发表日期 | 2018
|
ISSN | 2334-0983
|
ISBN | 978-1-5386-4728-8
|
会议录名称 | |
页码 | 1-7
|
会议日期 | 9-13 Dec. 2018
|
会议地点 | Abu Dhabi, United arab emirates
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | In this paper, a novel learning-based rate adaptation mechanism is proposed for downlink massive multiple-input-multiple-output (MIMO) networks with underlaid device-to-device (D2D) links, where neither the instantaneous channel state information of interfering channels nor their statistics is available at the downlink or D2D transmitters. Specifically, a coordinated scheme, where the D2D receivers join the uplink channel estimation of the associated cell, is investigated. The geographic distributions of selected downlink and D2D users are modeled as stationary and ergodic stochastic processes with unknown statistics. In order to facilitate robust rate allocation, we first derive the asymptotic signal-to-interference-and-noise ratio (SINR) for both downlink and D2D links, and show that their distributions due to unknown interfering channel can be approximated by Gaussian random variables. Then distributive reinforcement learning algorithms are proposed to evaluate the means and variances of these random variables. As a result, the base stations (BSs) and D2D transmitters could determine the transmission rates with a tolerable target packet outage probability. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Shenzhen Science and Technology Innovation Committee[JCYJ2016033111545794]
|
WOS研究方向 | Engineering
; Telecommunications
|
WOS类目 | Engineering, Electrical & Electronic
; Telecommunications
|
WOS记录号 | WOS:000465774300109
|
EI入藏号 | 20191306709123
|
EI主题词 | Channel state information
; Communication channels (information theory)
; Geographical distribution
; Learning algorithms
; Machine learning
; MIMO systems
; Random processes
; Random variables
; Signal to noise ratio
; Stochastic systems
; Transmitters
; Trellis codes
|
EI分类号 | Surveying:405.3
; Information Theory and Signal Processing:716.1
; Data Processing and Image Processing:723.2
; Artificial Intelligence:723.4
; Probability Theory:922.1
; Systems Science:961
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8647257 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24584 |
专题 | 南方科技大学 |
作者单位 | Southern Univ Sci & Technol, Shenzhen, Peoples R China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhang, Zezhong,Wang, Rui,Li, Yang. Rate Adaptation of D2D Underlaying Downlink Massive MIMO Networks with Reinforcement Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2018:1-7.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论