中文版 | English
题名

Rate Adaptation of D2D Underlaying Downlink Massive MIMO Networks with Reinforcement Learning

作者
通讯作者Zhang, Zezhong
DOI
发表日期
2018
ISSN
2334-0983
ISBN
978-1-5386-4728-8
会议录名称
页码
1-7
会议日期
9-13 Dec. 2018
会议地点
Abu Dhabi, United arab emirates
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
In this paper, a novel learning-based rate adaptation mechanism is proposed for downlink massive multiple-input-multiple-output (MIMO) networks with underlaid device-to-device (D2D) links, where neither the instantaneous channel state information of interfering channels nor their statistics is available at the downlink or D2D transmitters. Specifically, a coordinated scheme, where the D2D receivers join the uplink channel estimation of the associated cell, is investigated. The geographic distributions of selected downlink and D2D users are modeled as stationary and ergodic stochastic processes with unknown statistics. In order to facilitate robust rate allocation, we first derive the asymptotic signal-to-interference-and-noise ratio (SINR) for both downlink and D2D links, and show that their distributions due to unknown interfering channel can be approximated by Gaussian random variables. Then distributive reinforcement learning algorithms are proposed to evaluate the means and variances of these random variables. As a result, the base stations (BSs) and D2D transmitters could determine the transmission rates with a tolerable target packet outage probability.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Shenzhen Science and Technology Innovation Committee[JCYJ2016033111545794]
WOS研究方向
Engineering ; Telecommunications
WOS类目
Engineering, Electrical & Electronic ; Telecommunications
WOS记录号
WOS:000465774300109
EI入藏号
20191306709123
EI主题词
Channel state information ; Communication channels (information theory) ; Geographical distribution ; Learning algorithms ; Machine learning ; MIMO systems ; Random processes ; Random variables ; Signal to noise ratio ; Stochastic systems ; Transmitters ; Trellis codes
EI分类号
Surveying:405.3 ; Information Theory and Signal Processing:716.1 ; Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4 ; Probability Theory:922.1 ; Systems Science:961
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8647257
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/24584
专题南方科技大学
作者单位
Southern Univ Sci & Technol, Shenzhen, Peoples R China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zhang, Zezhong,Wang, Rui,Li, Yang. Rate Adaptation of D2D Underlaying Downlink Massive MIMO Networks with Reinforcement Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2018:1-7.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Zezhong]的文章
[Wang, Rui]的文章
[Li, Yang]的文章
百度学术
百度学术中相似的文章
[Zhang, Zezhong]的文章
[Wang, Rui]的文章
[Li, Yang]的文章
必应学术
必应学术中相似的文章
[Zhang, Zezhong]的文章
[Wang, Rui]的文章
[Li, Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。