中文版 | English
题名

A Deep Q-Network for robotic odor/gas source localization: Modeling, measurement and comparative study

作者
通讯作者Huang, Jian
发表日期
2021-10-01
DOI
发表期刊
ISSN
0263-2241
EISSN
1873-412X
卷号183
摘要
Robotic odor/gas source localization is a widely studied field, but most of the existing works are about rule-based algorithms. In this paper, the Deep Q-Network algorithm is applied to solve the odor source localization problem. An odor hits distribution model is proposed to model the odor concentration distribution in indoor environments, taking the dispersion by airflow, the odor molecular random walk, and the obstacles into account. The Deep Q-Network takes the stacked historic measurement data as the input and outputs the expected cumulative future reward of actions of the robots. The network is trained through 35,000 repeated episodes of random odor source localization tasks. The Deep Q-Network method is evaluated under four different environment settings in a simplified simulator and compared with two widely used odor source localization algorithms. The evaluation results demonstrate the advantages of the proposed algorithm. The algorithm is also validated in more complex indoor environments.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
Fundamental Research Funds for the Central Universities["HUST: 2019kfyRCPY","2019kfyXKJC019"] ; Research Fund of PLA of China[BWS17J024] ; Science, Technology and Innovation Commission of Shenzhen Municipality[ZDSYS20200811143601004]
WOS研究方向
Engineering ; Instruments & Instrumentation
WOS类目
Engineering, Multidisciplinary ; Instruments & Instrumentation
WOS记录号
WOS:000693561300004
出版者
EI入藏号
20212710587020
EI主题词
Electronic nose ; Odors ; Robotics
EI分类号
Robotics:731.5 ; Chemistry:801 ; Accidents and Accident Prevention:914.1 ; Electric and Electronic Instruments:942.1
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:19
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/245883
专题南方科技大学
工学院_机械与能源工程系
作者单位
1.Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Minist Educ Image Proc & Intelligent Cont, Wuhan 430074, Peoples R China
2.Shenzhen Key Lab Biomimet Robot & Intelligent Sys, Shenzhen 518055, Peoples R China
3.Southern Univ Sci & Technol, Guangdong Prov Key Lab Human Augmentat, Rehabil Robot Univ, Shenzhen 518055, Peoples R China
第一作者单位南方科技大学
推荐引用方式
GB/T 7714
Chen, Xinxing,Fu, Chenglong,Huang, Jian. A Deep Q-Network for robotic odor/gas source localization: Modeling, measurement and comparative study[J]. MEASUREMENT,2021,183.
APA
Chen, Xinxing,Fu, Chenglong,&Huang, Jian.(2021).A Deep Q-Network for robotic odor/gas source localization: Modeling, measurement and comparative study.MEASUREMENT,183.
MLA
Chen, Xinxing,et al."A Deep Q-Network for robotic odor/gas source localization: Modeling, measurement and comparative study".MEASUREMENT 183(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Xinxing]的文章
[Fu, Chenglong]的文章
[Huang, Jian]的文章
百度学术
百度学术中相似的文章
[Chen, Xinxing]的文章
[Fu, Chenglong]的文章
[Huang, Jian]的文章
必应学术
必应学术中相似的文章
[Chen, Xinxing]的文章
[Fu, Chenglong]的文章
[Huang, Jian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。