题名 | A Deep Q-Network for robotic odor/gas source localization: Modeling, measurement and comparative study |
作者 | |
通讯作者 | Huang, Jian |
发表日期 | 2021-10-01
|
DOI | |
发表期刊 | |
ISSN | 0263-2241
|
EISSN | 1873-412X
|
卷号 | 183 |
摘要 | Robotic odor/gas source localization is a widely studied field, but most of the existing works are about rule-based algorithms. In this paper, the Deep Q-Network algorithm is applied to solve the odor source localization problem. An odor hits distribution model is proposed to model the odor concentration distribution in indoor environments, taking the dispersion by airflow, the odor molecular random walk, and the obstacles into account. The Deep Q-Network takes the stacked historic measurement data as the input and outputs the expected cumulative future reward of actions of the robots. The network is trained through 35,000 repeated episodes of random odor source localization tasks. The Deep Q-Network method is evaluated under four different environment settings in a simplified simulator and compared with two widely used odor source localization algorithms. The evaluation results demonstrate the advantages of the proposed algorithm. The algorithm is also validated in more complex indoor environments. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | Fundamental Research Funds for the Central Universities["HUST: 2019kfyRCPY","2019kfyXKJC019"]
; Research Fund of PLA of China[BWS17J024]
; Science, Technology and Innovation Commission of Shenzhen Municipality[ZDSYS20200811143601004]
|
WOS研究方向 | Engineering
; Instruments & Instrumentation
|
WOS类目 | Engineering, Multidisciplinary
; Instruments & Instrumentation
|
WOS记录号 | WOS:000693561300004
|
出版者 | |
EI入藏号 | 20212710587020
|
EI主题词 | Electronic nose
; Odors
; Robotics
|
EI分类号 | Robotics:731.5
; Chemistry:801
; Accidents and Accident Prevention:914.1
; Electric and Electronic Instruments:942.1
|
ESI学科分类 | ENGINEERING
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:19
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/245883 |
专题 | 南方科技大学 工学院_机械与能源工程系 |
作者单位 | 1.Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Minist Educ Image Proc & Intelligent Cont, Wuhan 430074, Peoples R China 2.Shenzhen Key Lab Biomimet Robot & Intelligent Sys, Shenzhen 518055, Peoples R China 3.Southern Univ Sci & Technol, Guangdong Prov Key Lab Human Augmentat, Rehabil Robot Univ, Shenzhen 518055, Peoples R China |
第一作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Chen, Xinxing,Fu, Chenglong,Huang, Jian. A Deep Q-Network for robotic odor/gas source localization: Modeling, measurement and comparative study[J]. MEASUREMENT,2021,183.
|
APA |
Chen, Xinxing,Fu, Chenglong,&Huang, Jian.(2021).A Deep Q-Network for robotic odor/gas source localization: Modeling, measurement and comparative study.MEASUREMENT,183.
|
MLA |
Chen, Xinxing,et al."A Deep Q-Network for robotic odor/gas source localization: Modeling, measurement and comparative study".MEASUREMENT 183(2021).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论