中文版 | English
题名

Dynamic coherent diffractive imaging with a physics-driven untrained learning method

作者
通讯作者Shi,Yishi
发表日期
2021-09-27
DOI
发表期刊
EISSN
1094-4087
卷号29期号:20页码:31426-31442
摘要

Reconstruction of a complex field from one single diffraction measurement remains a challenging task among the community of coherent diffraction imaging (CDI). Conventional iterative algorithms are time-consuming and struggle to converge to a feasible solution because of the inherent ambiguities. Recently, deep-learning-based methods have shown considerable success in computational imaging, but they require large amounts of training data that in many cases are difficult to obtain. Here, we introduce a physics-driven untrained learning method, termed Deep CDI, which addresses the above problem and can image a dynamic process with high confidence and fast reconstruction. Without any labeled data for pretraining, the Deep CDI can reconstruct a complex-valued object from a single diffraction pattern by combining a conventional artificial neural network with a real-world physical imaging model. To our knowledge, we are the first to demonstrate that the support region constraint, which is widely used in the iteration-algorithm-based method, can be utilized for loss calculation. The loss calculated from support constraint and free propagation constraint are summed up to optimize the network’s weights. As a proof of principle, numerical simulations and optical experiments on a static sample are carried out to demonstrate the feasibility of our method. We then continuously collect 3600 diffraction patterns and demonstrate that our method can predict the dynamic process with an average reconstruction speed of 228 frames per second (FPS) using only a fraction of the diffraction data to train the weights.

相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS记录号
WOS:000702060000036
EI入藏号
20213810907211
EI主题词
Backpropagation ; Complex networks ; Deep learning ; Diffraction patterns ; Dynamics ; Image processing ; Interferometry ; Iterative methods ; Neural networks ; Numerical methods
EI分类号
Computer Systems and Equipment:722 ; Artificial Intelligence:723.4 ; Numerical Methods:921.6 ; Optical Variables Measurements:941.4
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85114960322
来源库
Scopus
引用统计
被引频次[WOS]:16
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/245924
专题工学院_电子与电气工程系
作者单位
1.School of Optoelectronics,University of Chinese Academy of Sciences,Beijing,100049,China
2.Center for Materials Science and Optoelectronics Engineering,University of Chinese Academy ofSciences,Beijing,100049,China
3.Institute of Computing Technology,Chinese Academy of Sciences,Beijing,100049,China
4.Department of Electrical and Electronic Engineering,Southern University of Science and Technology,Shenzhen,518055,China
5.Harbin Institute of Technology,Harbin,150001,China
推荐引用方式
GB/T 7714
Yang,Dongyu,Zhang,Junhao,Tao,Ye,et al. Dynamic coherent diffractive imaging with a physics-driven untrained learning method[J]. Optics Express,2021,29(20):31426-31442.
APA
Yang,Dongyu.,Zhang,Junhao.,Tao,Ye.,Lv,Wenjin.,Lu,Shun.,...&Shi,Yishi.(2021).Dynamic coherent diffractive imaging with a physics-driven untrained learning method.Optics Express,29(20),31426-31442.
MLA
Yang,Dongyu,et al."Dynamic coherent diffractive imaging with a physics-driven untrained learning method".Optics Express 29.20(2021):31426-31442.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yang,Dongyu]的文章
[Zhang,Junhao]的文章
[Tao,Ye]的文章
百度学术
百度学术中相似的文章
[Yang,Dongyu]的文章
[Zhang,Junhao]的文章
[Tao,Ye]的文章
必应学术
必应学术中相似的文章
[Yang,Dongyu]的文章
[Zhang,Junhao]的文章
[Tao,Ye]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。