中文版 | English
题名

Improving Seasonal Prediction of California Winter Precipitation Using Canonical Correlation Analysis

作者
通讯作者Wang,Gaoyun
发表日期
2021-09-16
DOI
发表期刊
ISSN
2169-897X
EISSN
2169-8996
卷号126期号:17
摘要
We have developed a canonical correlation analysis (CCA) model for improving seasonal winter rainfall prediction. It uses the anomalies of sea surface temperature (SST), vertically integrated vapor transport (IVT), and geopotential height at 250 hPa (Z250) in October and November, respectively, as the predictors for winter rainfall prediction. These predictors represent the processes that influence winter rainfall over California as documented in the literature, but their potential for improving predictability was previously unclear. This statistical model shows prediction skills higher than those of the baseline autoregressive model, the CCA-based prediction model using only the SST anomalies, and the dynamic predictions by the North American Multi-Model Ensemble (NMME). Averaged over California, the Pearson correlation (R) is 0.64, root mean squared error (RMSE) is 0.65, and Heidke skill score (HSS) is 0.42 when the CCA-based model is initialized by the three predictor fields (SST, IVT, and Z250) in November. These skills are higher than those of the NMME predictions initialized in November (R, RMSE, and HSS are 0.30, 0.83, and 0.15, respectively) and those of the autoregressive baseline (R, RMSE, and HSS are 0.10, 0.79, and 0.08, respectively). Hindcasts of winter rainfall initialized by October observations show R, RMSE, and HSS of 0.53, 0.81, and 0.39, respectively, also higher than those of the NMME seasonal prediction initialized in October (0.32, 0.79, and 0.22 for R, RMSE, and HSS, respectively) and the autoregressive model (0.30, 0.75, and 0.16 for R, RMSE, and HSS, respectively).
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
通讯
资助项目
China Scholarship Council (CSC)[201806010052] ; National Oceanic and Atmospheric Administration Climate Program Office (NOAA-CPO) Modeling, Analysis, Prediction and Projection (MAPP) Program[NA170AR4310123] ; California Department of Water Resources Grant[4600013129] ; China Special Fund for Meteorological Research in the Public Interest[GYHY201306047]
WOS研究方向
Meteorology & Atmospheric Sciences
WOS类目
Meteorology & Atmospheric Sciences
WOS记录号
WOS:000694671900008
出版者
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85114733852
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/245926
专题南方科技大学
附属教育集团_附属中学
作者单位
1.Department of Atmospheric and Oceanic Sciences,School of Physics,Peking University,Beijing,China
2.Department of Atmospheric and Oceanic Sciences,University of California,Los Angeles,Los Angeles,United States
3.The High School Affiliated to Southern University of Science and Technology,Shenzhen,China
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Wang,Gaoyun,Zhuang,Yizhou,Fu,Rong,et al. Improving Seasonal Prediction of California Winter Precipitation Using Canonical Correlation Analysis[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2021,126(17).
APA
Wang,Gaoyun,Zhuang,Yizhou,Fu,Rong,Zhao,Siyu,&Wang,Hongqing.(2021).Improving Seasonal Prediction of California Winter Precipitation Using Canonical Correlation Analysis.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,126(17).
MLA
Wang,Gaoyun,et al."Improving Seasonal Prediction of California Winter Precipitation Using Canonical Correlation Analysis".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 126.17(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Gaoyun]的文章
[Zhuang,Yizhou]的文章
[Fu,Rong]的文章
百度学术
百度学术中相似的文章
[Wang,Gaoyun]的文章
[Zhuang,Yizhou]的文章
[Fu,Rong]的文章
必应学术
必应学术中相似的文章
[Wang,Gaoyun]的文章
[Zhuang,Yizhou]的文章
[Fu,Rong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。