题名 | Performance Comparison of Multiobjective Evolutionary Algorithms on Problems with Partially Different Properties from Popular Test Suites |
作者 | |
通讯作者 | Matsumoto, Takashi |
DOI | |
发表日期 | 2018
|
会议名称 | IEEE International Conference on Systems, Man, and Cybernetics (SMC)
|
ISSN | 1062-922X
|
ISBN | 978-1-5386-6651-7
|
会议录名称 | |
页码 | 769-774
|
会议日期 | OCT 07-10, 2018
|
会议地点 | Miyazaki, Japan
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | A Multiobjective Evolutionary Algorithm (MOEA) is one of the effective approaches for solving Multiobjective Optimization Problems (MOPs). The performance of MOEAs is evaluated mainly by scalable MOP test suites where the number of objectives can be arbitrarily specified. However, the number of scalable MOP test suites is quite limited and their properties are similar. Thus, there is a risk that the current research on MOEAs is specialized for some properties (i.e., a shape of feasible regions, a shape of the Pareto front, and a distance function) of existing scalable MOP test suites. In this paper, we focus on the above properties of two popular MOP test suites (i.e., DTLZ and WFG). Based on DTLZ and WFG, we create 12 MOPs which have partially different properties from those of DTLZ and WFG. Computational experiments show that the search performance of the state-of-the-art MOEAs strongly depends on three properties. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Cybernetics
; Computer Science, Information Systems
|
WOS记录号 | WOS:000459884800129
|
EI入藏号 | 20191006582879
|
EI主题词 | Evolutionary Algorithms
; Problem Solving
; Testing
|
EI分类号 | Optimization Techniques:921.5
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8616135 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24592 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Osaka Prefecture Univ, Dept Comp Sci & Intelligent Syst, Sakai, Osaka 5998531, Japan 2.Southern Univ Sci & Technol SUSTech, Dept Comp Sci & Engn, Shenzhen, Peoples R China |
推荐引用方式 GB/T 7714 |
Matsumoto, Takashi,Masuyama, Naoki,Nojima, Yusuke,et al. Performance Comparison of Multiobjective Evolutionary Algorithms on Problems with Partially Different Properties from Popular Test Suites[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2018:769-774.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论