中文版 | English
题名

Staging optimization of multi-stage perforation fracturing based on unsupervised machine learning 基于无监督机器学习的多段射孔压裂的分段优化

作者
发表日期
2021-08-20
DOI
发表期刊
ISSN
1673-5005
卷号45期号:4页码:59-66
摘要

In the development of unconventional shale oil and gas resources, it is necessary to conductmulti-stage perforated fracturing in low permeability reservoirs and form fracturing net sweep regions or fracture clusters through artificial fractures in order to establish effective paths for oil and gas flow from the reservoir to the production wellbore. In this study, an unsupervised k-means clustering algorithm based on the Euclidean distance was used to predict the reservoir fluid flow and geo-mechanical parameters in order to identify the regions which can be fractured to form fracture clusters, so as to ensure the effectiveness of the perforation and improve the efficiency of the perforated fracturing. The location and area of the fracturing clusters and fracture pattern can be obtained by the numerical simulation of the perforated fracturing process using the proposed k-means model. The simulation results show that the fracture clusters divided and designed by the k-means algorithm can be used to identify the suitable fracturing regions, and the trained k-means can be applied to predict the perforated fracturing stages for similar wells in the same block. The method proposed in this paper can optimize the division of fracturing stages and the selection of perforated fracturing locations to improve the fracturing efficiency.

关键词
相关链接[Scopus记录]
收录类别
语种
中文
学校署名
第一 ; 通讯
EI入藏号
20213710886709
EI主题词
Efficiency ; Energy resources ; Flow of gases ; K-means clustering ; Low permeability reservoirs ; Machine learning ; Oil wells ; Petroleum reservoir engineering
EI分类号
Petroleum and Related Deposits:512 ; Energy Resources and Renewable Energy Issues:525.1 ; Gas Dynamics:631.1.2 ; Production Engineering:913.1 ; Materials Science:951
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/245946
专题工学院
工学院_环境科学与工程学院
作者单位
1.College of Engineering in Southern University of Science and Technology,Shenzhen,518055,China
2.School of Petroleum Engineering in China University of Petroleum (East China),Qingdao,266580,China
3.Pengcheng Laboratory,Shenzhen,518055,China
第一作者单位工学院
第一作者的第一单位工学院
推荐引用方式
GB/T 7714
Zhang,Dongxiao,Yu,Yulong,Li,Sanbai,等. Staging optimization of multi-stage perforation fracturing based on unsupervised machine learning 基于无监督机器学习的多段射孔压裂的分段优化[J]. 中国石油大学学报(自然科学版),2021,45(4):59-66.
APA
Zhang,Dongxiao,Yu,Yulong,Li,Sanbai,Chen,Yuntian,&Xu,Jiafang.(2021).Staging optimization of multi-stage perforation fracturing based on unsupervised machine learning 基于无监督机器学习的多段射孔压裂的分段优化.中国石油大学学报(自然科学版),45(4),59-66.
MLA
Zhang,Dongxiao,et al."Staging optimization of multi-stage perforation fracturing based on unsupervised machine learning 基于无监督机器学习的多段射孔压裂的分段优化".中国石油大学学报(自然科学版) 45.4(2021):59-66.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2021-基于无监督机器学习的多段射孔压(14917KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Dongxiao]的文章
[Yu,Yulong]的文章
[Li,Sanbai]的文章
百度学术
百度学术中相似的文章
[Zhang,Dongxiao]的文章
[Yu,Yulong]的文章
[Li,Sanbai]的文章
必应学术
必应学术中相似的文章
[Zhang,Dongxiao]的文章
[Yu,Yulong]的文章
[Li,Sanbai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。