题名 | Multi-Task Learning via Generalized Tensor Trace Norm |
作者 | |
DOI | |
发表日期 | 2021-08-14
|
会议录名称 | |
页码 | 2254-2262
|
摘要 | The trace norm is widely used in multi-task learning as it can discover low-rank structures among tasks in terms of model parameters. Nowadays, with the emerging of big complex datasets and the popularity of deep learning techniques, tensor trace norms have been used for deep multi-task models. However, existing tensor trace norms cannot discover all the low-rank structures and they require users to determine the importance of their components manually. To solve those two issues, in this paper, we propose a Generalized Tensor Trace Norm (GTTN). The GTTN is defined as a convex combination of matrix trace norms of all possible tensor flattenings and hence it can discover all the possible low-rank structures. Based on the induced objective function with the GTTN, we can learn combination coefficients in the GTTN with several strategies. Experiments on real-world datasets demonstrate the effectiveness of the proposed GTTN. |
关键词 | |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20213810905656
|
EI主题词 | Deep learning
; Learning systems
; Multi-task learning
; Tensors
|
EI分类号 | Data Processing and Image Processing:723.2
; Algebra:921.1
|
Scopus记录号 | 2-s2.0-85114956167
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/245947 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern University of Science and Technology,Shenzhen,China 2.Nanjing University,Nanjing,China |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhang,Yi,Zhang,Yu,Wang,Wei. Multi-Task Learning via Generalized Tensor Trace Norm[C],2021:2254-2262.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论