中文版 | English
题名

ImGAGN: Imbalanced Network Embedding via Generative Adversarial Graph Networks

作者
DOI
发表日期
2021-08-14
会议录名称
页码
1390-1398
摘要
Imbalanced classification on graphs is ubiquitous yet challenging in many real-world applications, such as fraudulent node detection. Recently, graph neural networks (GNNs) have shown promising performance on many network analysis tasks. However, most existing GNNs have almost exclusively focused on the balanced networks, and would get unappealing performance on the imbalanced networks. To bridge this gap, in this paper, we present a generative adversarial graph network model, called ImGAGN to address the imbalanced classification problem on graphs. It introduces a novel generator for graph structure data, named GraphGenerator, which can simulate both the minority class nodes' attribute distribution and network topological structure distribution by generating a set of synthetic minority nodes such that the number of nodes in different classes can be balanced. Then a graph convolutional network (GCN) discriminator is trained to discriminate between real nodes and fake (i.e., generated) nodes, and also between minority nodes and majority nodes on the synthetic balanced network. To validate the effectiveness of the proposed method, extensive experiments are conducted on four real-world imbalanced network datasets. Experimental results demonstrate that the proposed method ImGAGN outperforms state-of-the-art algorithms for semi-supervised imbalanced node classification task.
关键词
学校署名
第一
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20213810905661
EI主题词
Convolutional neural networks ; Data mining ; Graph theory
EI分类号
Data Processing and Image Processing:723.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
Scopus记录号
2-s2.0-85114905907
来源库
Scopus
引用统计
被引频次[WOS]:36
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/245949
专题工学院_计算机科学与工程系
作者单位
1.Southern University of Science and Technology,Shenzhen,China
2.The University of Queensland,Brisbane,Australia
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Qu,Liang,Zhu,Huaisheng,Zheng,Ruiqi,et al. ImGAGN: Imbalanced Network Embedding via Generative Adversarial Graph Networks[C],2021:1390-1398.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qu,Liang]的文章
[Zhu,Huaisheng]的文章
[Zheng,Ruiqi]的文章
百度学术
百度学术中相似的文章
[Qu,Liang]的文章
[Zhu,Huaisheng]的文章
[Zheng,Ruiqi]的文章
必应学术
必应学术中相似的文章
[Qu,Liang]的文章
[Zhu,Huaisheng]的文章
[Zheng,Ruiqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。