题名 | A novel convolutional neural network model to remove muscle artifacts from eeg |
作者 | |
通讯作者 | Liu,Quanying |
DOI | |
发表日期 | 2021
|
会议名称 | IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
|
ISSN | 1520-6149
|
ISBN | 978-1-7281-7606-2
|
会议录名称 | |
卷号 | 2021-June
|
页码 | 1265-1269
|
会议日期 | JUN 06-11, 2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | The recorded electroencephalography (EEG) signals are usually contaminated by many artifacts. In recent years, deep learning models have been used for denoising of electroencephalography (EEG) data and provided comparable performance with that of traditional techniques. However, the performance of the existing networks in electromyograph (EMG) artifact removal was limited and suffered from the over-fitting problem. Here we introduce a novel convolutional neural network (CNN) with gradually ascending feature dimensions and downsampling in time series for removing muscle artifacts in EEG data. Compared with other types of convolutional networks, this model largely eliminates the over-fitting and significantly outperforms four benchmark networks in EEGdenoiseNet. Our study suggested that the deep network architecture might help avoid overfitting and better remove EMG artifacts in EEG. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Guangdong Natural Science Foundation Joint Fund[2019A1515111038]
|
WOS研究方向 | Acoustics
; Computer Science
; Engineering
; Imaging Science & Photographic Technology
|
WOS类目 | Acoustics
; Computer Science, Artificial Intelligence
; Computer Science, Software Engineering
; Engineering, Electrical & Electronic
; Imaging Science & Photographic Technology
|
WOS记录号 | WOS:000704288401102
|
EI入藏号 | 20213810907351
|
EI主题词 | Convolution
; Deep learning
; Electroencephalography
; Electrophysiology
; Muscle
; Network architecture
; Signal processing
|
EI分类号 | Bioengineering and Biology:461
; Information Theory and Signal Processing:716.1
|
Scopus记录号 | 2-s2.0-85114960853
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9414228 |
引用统计 |
被引频次[WOS]:27
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/245963 |
专题 | 工学院_生物医学工程系 |
作者单位 | 1.Southern University of Science and Technology,Department of Biomedical Engineering,Shenzhen,518055,China 2.University of Macau,Center for Cognitive and Brain Sciences,Taipa,Macao |
第一作者单位 | 生物医学工程系 |
通讯作者单位 | 生物医学工程系 |
第一作者的第一单位 | 生物医学工程系 |
推荐引用方式 GB/T 7714 |
Zhang,Haoming,Wei,Chen,Zhao,Mingqi,et al. A novel convolutional neural network model to remove muscle artifacts from eeg[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1265-1269.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论