中文版 | English
题名

A novel convolutional neural network model to remove muscle artifacts from eeg

作者
通讯作者Liu,Quanying
DOI
发表日期
2021
会议名称
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
ISSN
1520-6149
ISBN
978-1-7281-7606-2
会议录名称
卷号
2021-June
页码
1265-1269
会议日期
JUN 06-11, 2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

The recorded electroencephalography (EEG) signals are usually contaminated by many artifacts. In recent years, deep learning models have been used for denoising of electroencephalography (EEG) data and provided comparable performance with that of traditional techniques. However, the performance of the existing networks in electromyograph (EMG) artifact removal was limited and suffered from the over-fitting problem. Here we introduce a novel convolutional neural network (CNN) with gradually ascending feature dimensions and downsampling in time series for removing muscle artifacts in EEG data. Compared with other types of convolutional networks, this model largely eliminates the over-fitting and significantly outperforms four benchmark networks in EEGdenoiseNet. Our study suggested that the deep network architecture might help avoid overfitting and better remove EMG artifacts in EEG.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Guangdong Natural Science Foundation Joint Fund[2019A1515111038]
WOS研究方向
Acoustics ; Computer Science ; Engineering ; Imaging Science & Photographic Technology
WOS类目
Acoustics ; Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Engineering, Electrical & Electronic ; Imaging Science & Photographic Technology
WOS记录号
WOS:000704288401102
EI入藏号
20213810907351
EI主题词
Convolution ; Deep learning ; Electroencephalography ; Electrophysiology ; Muscle ; Network architecture ; Signal processing
EI分类号
Bioengineering and Biology:461 ; Information Theory and Signal Processing:716.1
Scopus记录号
2-s2.0-85114960853
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9414228
引用统计
被引频次[WOS]:27
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/245963
专题工学院_生物医学工程系
作者单位
1.Southern University of Science and Technology,Department of Biomedical Engineering,Shenzhen,518055,China
2.University of Macau,Center for Cognitive and Brain Sciences,Taipa,Macao
第一作者单位生物医学工程系
通讯作者单位生物医学工程系
第一作者的第一单位生物医学工程系
推荐引用方式
GB/T 7714
Zhang,Haoming,Wei,Chen,Zhao,Mingqi,et al. A novel convolutional neural network model to remove muscle artifacts from eeg[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2021:1265-1269.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Haoming]的文章
[Wei,Chen]的文章
[Zhao,Mingqi]的文章
百度学术
百度学术中相似的文章
[Zhang,Haoming]的文章
[Wei,Chen]的文章
[Zhao,Mingqi]的文章
必应学术
必应学术中相似的文章
[Zhang,Haoming]的文章
[Wei,Chen]的文章
[Zhao,Mingqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。