中文版 | English
题名

Learning Graph Convolutional Networks based on Quantum Vertex Information Propagation

作者
发表日期
2021
DOI
发表期刊
ISSN
1041-4347
EISSN
1558-2191
卷号PP期号:99页码:1-1
摘要
This paper proposes a new Quantum Spatial Graph Convolutional Neural Network (QSGCNN) model that can directly learn a classification function for graphs of arbitrary sizes. Unlike state-of-the-art Graph Convolutional Neural Network (GCNN) models, the proposed QSGCNN model incorporates the process of identifying transitive aligned vertices between graphs and transforms arbitrary sized graphs into fixed-sized aligned vertex grid structures. In order to learn representative graph characteristics, a new quantum spatial graph convolution is proposed and employed to extract multi-scale vertex features, in terms of quantum information propagation between grid vertices of each graph. Since the quantum spatial convolution preserves the grid structures of the input vertices (i.e., the convolution layer does not change the original spatial sequence of vertices), the proposed QSGCNN model allows to directly employ the traditional convolutional neural network architecture to further learn from the global graph topology, providing an end-to-end deep learning architecture that integrates the graph representation and learning in the quantum spatial graph convolution layer and the traditional convolutional layer for graph classifications. We demonstrate the effectiveness of the proposed QSGCNN model in relation to existing state-of-the-art methods. Experiments on benchmark graph classification datasets demonstrate the effectiveness of the proposed QSGCNN model.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
EI入藏号
20213710887467
EI主题词
Backpropagation ; Classification (of information) ; Convolution ; Convolutional neural networks ; Deep learning ; Information dissemination ; Multilayer neural networks ; Network architecture
EI分类号
Information Theory and Signal Processing:716.1 ; Artificial Intelligence:723.4 ; Information Dissemination:903.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85114650652
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9521820
引用统计
被引频次[WOS]:16
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/245995
专题工学院_计算机科学与工程系
作者单位
1.School of Information, Central University of Finance and Economics, 12647 Beijing, Beijing, China, 100081 (e-mail: bailucs@cufe.edu.cn)
2.School of Information, Central University of Finance and Economics, 12647 Beijing, Beijing, China, (e-mail: jiaoyuhang@email.cufe.edu.cn)
3.School of Information, Central University of Finance and Economics, 12647 Beijing, Beijing, China, (e-mail: cuilixin@cufe.edu.cn)
4.Department of Computer Science, Southern University of Science and Technology, 255310 Shenzhen, Guangdong, China, (e-mail: rossil@sustech.edu.cn)
5.Department of Computer Science, Central University of Finance and Economics, 12647 Beijing, Beijing, China, (e-mail: wangyuecs@cufe.edu.cn)
6.Computer Science, UIC, Chicago, Illinois, United States, 60607 (e-mail: psyu@uic.edu)
7.computer science department, the university of York, York, York, United Kingdom of Great Britain and Northern Ireland, (e-mail: edwin.hancock@york.ac.uk)
推荐引用方式
GB/T 7714
Bai,Lu,Jiao,Yuhang,Cui,Lixin,et al. Learning Graph Convolutional Networks based on Quantum Vertex Information Propagation[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2021,PP(99):1-1.
APA
Bai,Lu.,Jiao,Yuhang.,Cui,Lixin.,Rossi,Luca.,Wang,Yue.,...&Hancock,Edwin.(2021).Learning Graph Convolutional Networks based on Quantum Vertex Information Propagation.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,PP(99),1-1.
MLA
Bai,Lu,et al."Learning Graph Convolutional Networks based on Quantum Vertex Information Propagation".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING PP.99(2021):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Bai,Lu]的文章
[Jiao,Yuhang]的文章
[Cui,Lixin]的文章
百度学术
百度学术中相似的文章
[Bai,Lu]的文章
[Jiao,Yuhang]的文章
[Cui,Lixin]的文章
必应学术
必应学术中相似的文章
[Bai,Lu]的文章
[Jiao,Yuhang]的文章
[Cui,Lixin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。