中文版 | English
题名

Multiobjective Evolutionary Data Mining for Performance Improvement of Evolutionary Multiobjective Optimization

作者
通讯作者Nojima, Yusuke
DOI
发表日期
2018
ISSN
1062-922X
ISBN
978-1-5386-6651-7
会议录名称
页码
745-750
会议日期
7-10 Oct. 2018
会议地点
Miyazaki, Japan
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
In recent years, evolutionary multiobjective optimization (EMO) algorithms have frequently been used for engineering problems with some conflicting objective functions to be simultaneously optimized EMO algorithms can provide a number of Pareto optimal solutions to users. Two scenarios are considered in the practical use of EMO algorithms. One is that a decision maker selects a single solution from the obtained ones after the EMO process. The other is that a decision maker utilizes the solutions to analyze the relationship between design variables and objective functions of the corresponding problem. In this paper, we apply fuzzy genetics-based machine learning to the second scenario in order to generate if-then rule-based classifiers which represent the relationship between design variables and objective functions. We also utilize this method during the EMO process to pre-screen candidate offspring solutions. The classifier detects non-promising offspring solutions. Then, they are discarded before their fitness evaluation, so that the computation resource is used only for promising solutions. We apply this method to one engineering problem and examine its effect on the search performance of an EMO algorithm.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
WOS研究方向
Computer Science
WOS类目
Computer Science, Cybernetics ; Computer Science, Information Systems
WOS记录号
WOS:000459884800125
EI入藏号
20191006582881
EI主题词
Chromosomes ; Data mining ; Decision making ; Evolutionary algorithms ; Machine learning ; Pareto principle ; Pattern recognition
EI分类号
Biological Materials and Tissue Engineering:461.2 ; Data Processing and Image Processing:723.2 ; Management:912.2 ; Optimization Techniques:921.5
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8616131
引用统计
被引频次[WOS]:2
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/24618
专题工学院_计算机科学与工程系
作者单位
1.Osaka Prefecture Univ, Dept Comp Sci & Intelligent Syst, Sakai, Osaka 5998531, Japan
2.Southern Univ Sci & Technol SUSTech, Dept Comp Sci & Engn, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Nojima, Yusuke,Tanigaki, Yuki,Masuyama, Naoki,et al. Multiobjective Evolutionary Data Mining for Performance Improvement of Evolutionary Multiobjective Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2018:745-750.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Nojima, Yusuke]的文章
[Tanigaki, Yuki]的文章
[Masuyama, Naoki]的文章
百度学术
百度学术中相似的文章
[Nojima, Yusuke]的文章
[Tanigaki, Yuki]的文章
[Masuyama, Naoki]的文章
必应学术
必应学术中相似的文章
[Nojima, Yusuke]的文章
[Tanigaki, Yuki]的文章
[Masuyama, Naoki]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。