题名 | Multiobjective Evolutionary Data Mining for Performance Improvement of Evolutionary Multiobjective Optimization |
作者 | |
通讯作者 | Nojima, Yusuke |
DOI | |
发表日期 | 2018
|
ISSN | 1062-922X
|
ISBN | 978-1-5386-6651-7
|
会议录名称 | |
页码 | 745-750
|
会议日期 | 7-10 Oct. 2018
|
会议地点 | Miyazaki, Japan
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | In recent years, evolutionary multiobjective optimization (EMO) algorithms have frequently been used for engineering problems with some conflicting objective functions to be simultaneously optimized EMO algorithms can provide a number of Pareto optimal solutions to users. Two scenarios are considered in the practical use of EMO algorithms. One is that a decision maker selects a single solution from the obtained ones after the EMO process. The other is that a decision maker utilizes the solutions to analyze the relationship between design variables and objective functions of the corresponding problem. In this paper, we apply fuzzy genetics-based machine learning to the second scenario in order to generate if-then rule-based classifiers which represent the relationship between design variables and objective functions. We also utilize this method during the EMO process to pre-screen candidate offspring solutions. The classifier detects non-promising offspring solutions. Then, they are discarded before their fitness evaluation, so that the computation resource is used only for promising solutions. We apply this method to one engineering problem and examine its effect on the search performance of an EMO algorithm. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Cybernetics
; Computer Science, Information Systems
|
WOS记录号 | WOS:000459884800125
|
EI入藏号 | 20191006582881
|
EI主题词 | Chromosomes
; Data mining
; Decision making
; Evolutionary algorithms
; Machine learning
; Pareto principle
; Pattern recognition
|
EI分类号 | Biological Materials and Tissue Engineering:461.2
; Data Processing and Image Processing:723.2
; Management:912.2
; Optimization Techniques:921.5
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8616131 |
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24618 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Osaka Prefecture Univ, Dept Comp Sci & Intelligent Syst, Sakai, Osaka 5998531, Japan 2.Southern Univ Sci & Technol SUSTech, Dept Comp Sci & Engn, Shenzhen, Peoples R China |
推荐引用方式 GB/T 7714 |
Nojima, Yusuke,Tanigaki, Yuki,Masuyama, Naoki,et al. Multiobjective Evolutionary Data Mining for Performance Improvement of Evolutionary Multiobjective Optimization[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2018:745-750.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论