题名 | A Reinforcement Learning Based Design of Compressive Sensing Systems for Human Activity Recognition |
作者 | |
通讯作者 | Hao, Qi |
DOI | |
发表日期 | 2018
|
ISSN | 21689229
|
ISBN | 978-1-5386-4708-0
|
会议录名称 | |
卷号 | 2018-October
|
页码 | 1456-1459
|
会议日期 | 28-31 Oct. 2018
|
会议地点 | New Delhi, India
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | This paper presents a reinforcement learning based distributed compressive sensing system design method for human activity recognition. This system uses distributed infrared sensors to capture human motion information and aims at representing complex activity scenarios with as little amount of data as possible. Therefore, a set of binary sampling masks are designed to modulate the fields of view (FoV) of sensors and to reduce the amount of measurement data without losing the major features of the target information. The spatial relation between two adjacent sensors is investigated to acquire 3d information with the maximum efficiency. In this work, the main contributions include two parts: (1) design the optimal deployment of distributed sensors and (2) learn the structure of sampling masks by using the policy gradient (PG) based reinforcement learning scheme. Experiment results show that the the proposed system can increase the sensing efficiency and improve the performance of activity recognition. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61773197]
|
WOS研究方向 | Engineering
; Remote Sensing
|
WOS类目 | Engineering, Electrical & Electronic
; Remote Sensing
|
WOS记录号 | WOS:000468199300374
|
EI入藏号 | 20190606463693
|
EI主题词 | Compressed sensing
; Design
; Efficiency
; Infrared detectors
; Machine learning
; Pattern recognition
|
EI分类号 | Information Theory and Signal Processing:716.1
; Artificial Intelligence:723.4
; Production Engineering:913.1
; Radiation Measuring Instruments:944.7
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8589690 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24621 |
专题 | 工学院_计算机科学与工程系 前沿与交叉科学研究院 |
作者单位 | 1.Harbin Inst Technol, Dept Elect & Informat Engn, Harbin 150001, Heilongjiang, Peoples R China 2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China |
通讯作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Liu, Guocheng,Ma, Rui,Hao, Qi. A Reinforcement Learning Based Design of Compressive Sensing Systems for Human Activity Recognition[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2018:1456-1459.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论