题名 | A post-processing method to improve the white matter hyperintensity segmentation accuracy for randomly-initialized U-net |
作者 | |
通讯作者 | Chen, Yifan |
DOI | |
发表日期 | 2018
|
会议名称 | 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)
|
ISSN | 1546-1874
|
ISBN | 978-1-5386-6812-2
|
会议录名称 | |
卷号 | 2018-November
|
页码 | 1-5
|
会议日期 | 2018
|
会议地点 | Shanghai, China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | White matter hyperintensity (WMH) is commonly found in elder individuals and appears to be associated with brain diseases. U-net is a convolutional network that has been widely used for biomedical image segmentation. Recently, U-net has been successfully applied to WMH segmentation. Random initialization is usally used to initialize the model weights in the U-net. However, the model may coverage to different local optima with different randomly initialized weights. We find a combination of thresholding and averaging the outputs of U-nets with different random initializations can largely improve the WMH segmentation accuracy. Based on this observation, we propose a post-processing technique concerning the way how averaging and thresholding are conducted. Specifically, we first transfer the score maps from three U-nets to binary masks via thresholding and then average those binary masks to obtain the final WMH segmentation. Both quantitative analysis (via the Dice similarity coefficient) and qualitative analysis (via visual examinations) reveal the superior performance of the proposed method. This post-processing technique is independent of the model used. As such, it can also be applied to situations where other deep learning models are employed, especially when random initialization is adopted and pre-training is unavailable. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[81501546]
|
WOS研究方向 | Engineering
|
WOS类目 | Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000458909600239
|
EI入藏号 | 20191106629498
|
EI主题词 | Deep Learning
; Image Segmentation
; Magnetic Resonance Imaging
; Processing
|
EI分类号 | Imaging Techniques:746
; Manufacturing:913.4
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8631858 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24649 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China 2.Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China 3.Univ Waikato, Fac Sci & Engn, Hamilton, New Zealand |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Zhang, Yue,Chen, Wanli,Chen, Yifan,et al. A post-processing method to improve the white matter hyperintensity segmentation accuracy for randomly-initialized U-net[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2018:1-5.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
A post-processing me(1019KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论