中文版 | English
题名

A post-processing method to improve the white matter hyperintensity segmentation accuracy for randomly-initialized U-net

作者
通讯作者Chen, Yifan
DOI
发表日期
2018
会议名称
2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)
ISSN
1546-1874
ISBN
978-1-5386-6812-2
会议录名称
卷号
2018-November
页码
1-5
会议日期
2018
会议地点
Shanghai, China
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

White matter hyperintensity (WMH) is commonly found in elder individuals and appears to be associated with brain diseases. U-net is a convolutional network that has been widely used for biomedical image segmentation. Recently, U-net has been successfully applied to WMH segmentation. Random initialization is usally used to initialize the model weights in the U-net. However, the model may coverage to different local optima with different randomly initialized weights. We find a combination of thresholding and averaging the outputs of U-nets with different random initializations can largely improve the WMH segmentation accuracy. Based on this observation, we propose a post-processing technique concerning the way how averaging and thresholding are conducted. Specifically, we first transfer the score maps from three U-nets to binary masks via thresholding and then average those binary masks to obtain the final WMH segmentation. Both quantitative analysis (via the Dice similarity coefficient) and qualitative analysis (via visual examinations) reveal the superior performance of the proposed method. This post-processing technique is independent of the model used. As such, it can also be applied to situations where other deep learning models are employed, especially when random initialization is adopted and pre-training is unavailable.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[81501546]
WOS研究方向
Engineering
WOS类目
Engineering, Electrical & Electronic
WOS记录号
WOS:000458909600239
EI入藏号
20191106629498
EI主题词
Deep Learning ; Image Segmentation ; Magnetic Resonance Imaging ; Processing
EI分类号
Imaging Techniques:746 ; Manufacturing:913.4
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8631858
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/24649
专题工学院_电子与电气工程系
作者单位
1.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
2.Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong, Peoples R China
3.Univ Waikato, Fac Sci & Engn, Hamilton, New Zealand
第一作者单位电子与电气工程系
通讯作者单位电子与电气工程系
第一作者的第一单位电子与电气工程系
推荐引用方式
GB/T 7714
Zhang, Yue,Chen, Wanli,Chen, Yifan,et al. A post-processing method to improve the white matter hyperintensity segmentation accuracy for randomly-initialized U-net[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2018:1-5.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
A post-processing me(1019KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Yue]的文章
[Chen, Wanli]的文章
[Chen, Yifan]的文章
百度学术
百度学术中相似的文章
[Zhang, Yue]的文章
[Chen, Wanli]的文章
[Chen, Yifan]的文章
必应学术
必应学术中相似的文章
[Zhang, Yue]的文章
[Chen, Wanli]的文章
[Chen, Yifan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。