题名 | A Novel Automated Approach for Software Effort Estimation Based on Data Augmentation |
作者 | |
通讯作者 | Song, Liyan |
DOI | |
发表日期 | 2018
|
会议名称 | ACM Symposium on the Foundations of Software Engineering (FSE)
|
会议录名称 | |
页码 | 468-479
|
会议日期 | 2018-11
|
会议地点 | Lake Buena Vista, FL,
|
会议举办国 | 英国
|
出版地 | 1515 BROADWAY, NEW YORK, NY 10036-9998 USA
|
出版者 | |
摘要 | Software effort estimation (SEE) usually suffers from data scarcity problem due to the expensive or long process of data collection. As a result, companies usually have limited projects for effort estimation, causing unsatisfactory prediction performance. Few studies have investigated strategies to generate additional SEE data to aid such learning. We aim to propose a synthetic data generator to address the data scarcity problem of SEE. Our synthetic generator enlarges the SEE data set size by slightly displacing some randomly chosen training examples. It can be used with any SEE method as a data preprocessor. Its effectiveness is justified with 6 state-of-the-art SEE models across 14 SEE data sets. We also compare our data generator against the only existing approach in the SEE literature. Experimental results show that our synthetic projects can significantly improve the performance of some SEE methods especially when the training data is insufficient. When they cannot significantly improve the prediction performance, they are not detrimental either. Besides, our synthetic data generator is significantly superior or perform similarly to its competitor in the SEE literature. Therefore, our data generator plays a non-harmful if not significantly beneficial effect on the SEE methods investigated in this paper. Therefore, it is helpful in addressing the data scarcity problem of SEE. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
学科领域 | 计算机科学技术
; 人工智能
; 计算机软件
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | EPSRC[EP/J017515/1]
; EPSRC[EP/R006660/1]
; EPSRC[EP/P005578/1]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Software Engineering
|
WOS记录号 | WOS:000460371900042
|
EI入藏号 | 20185006250382
|
EI主题词 | Engineering
; Industrial Engineering
|
EI分类号 | Computer Programming:723.1
; Industrial Engineering:912.1
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:12
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24661 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Southern University of Science and Technology, China 2.University of Birmingham, UK |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Song, Liyan,Minku, Leandro L.,Yao, Xin. A Novel Automated Approach for Software Effort Estimation Based on Data Augmentation[C]. 1515 BROADWAY, NEW YORK, NY 10036-9998 USA:ASSOC COMPUTING MACHINERY,2018:468-479.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
2-synGen_FSE-2018092(939KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论