题名 | Superpixel Based Automatic Segmentation of Corneal Ulcers from Ocular Staining Images |
作者 | |
通讯作者 | Tang, Xiaoying |
DOI | |
发表日期 | 2018
|
会议名称 | 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)
|
ISSN | 1546-1874
|
ISBN | 978-1-5386-6812-2
|
会议录名称 | |
卷号 | 2018-November
|
页码 | 1-5
|
会议日期 | 2018
|
会议地点 | Shanghai, China
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | In this paper, we proposed and validated a novel and accurate automatic pipeline for extracting flaky corneal ulcer areas based on fluorescein staining images. We first used an existing semi-automatic approach to identify the cornea from each image. The ulcer area was then segmented within the cornea by employing a combination of techniques: 1) identify and modify the color information of reflective areas; 2) segment each image into a total of 1000 superpixels based on simple linear iterative clustering (SLIC); 3) employ support vector machine (SVM) to classify all superpixels into two classes; 4) erode and dilate to polish the ulcer segmentation results. The proposed pipeline has been validated on a total of 150 clinical images. Accurate segmentation results have been obtained, with the mean accuracy being 0.984, the mean Jaccard similarity coefficient being 0.871, and the Pearson correlation coefficient being 0.921 when compared with the manually-delineated gold standard. The proposed method was found to significantly outperform two classic segmentation algorithms (active contour and Otsu thresholding) in terms of segmenting corneal ulcers. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[81501546]
|
WOS研究方向 | Engineering
|
WOS类目 | Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000458909600176
|
EI入藏号 | 20191106629385
|
EI主题词 | Classification (Of Information)
; Correlation Methods
; Digital Signal Processing
; Diseases
; Iterative Methods
; Mathematical Morphology
; Pipelines
; Pixels
; Superpixels
; Support Vector Machines
|
EI分类号 | Pipe, Piping And Pipelines:619.1
; Information Theory And Signal Processing:716.1
; Computer Software, Data HAndling And Applications:723
; Numerical Methods:921.6
; Mathematical Statistics:922.2
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8631795 |
引用统计 |
被引频次[WOS]:7
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24686 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Guangdong, Peoples R China 2.Sun Yat Sen Univ, Zhongshan Ophthalm Ctr, State Key Lab Ophthalmol, Guangzhou, Guangdong, Peoples R China |
第一作者单位 | 电子与电气工程系 |
通讯作者单位 | 电子与电气工程系 |
第一作者的第一单位 | 电子与电气工程系 |
推荐引用方式 GB/T 7714 |
Deng, Lijie,Huang, Haixiang,Yuan, Jin,et al. Superpixel Based Automatic Segmentation of Corneal Ulcers from Ocular Staining Images[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2018:1-5.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Superpixel Based Aut(1507KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论