中文版 | English
题名

SPEECH DEREVERBERATION BASED ON INTEGRATED DEEP AND ENSEMBLE LEARNING ALGORITHM

作者
通讯作者Lee, Wei-Jen
DOI
发表日期
2018
ISSN
1520-6149
ISBN
978-1-5386-4659-5
会议录名称
卷号
2018-April
页码
5454-5458
会议日期
15-20 April 2018
会议地点
Calgary, AB, Canada
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Reverberation, which is generally caused by sound reflections from walls, ceilings, and floors, can result in severe performance degradation of acoustic applications. Due to a complicated combination of attenuation and time-delay effects, the reverberation property is difficult to characterize, and it remains a challenging task to effectively retrieve the anechoic speech signals from reverberation ones. In the present study, we proposed a novel integrated deep and ensemble learning algorithm (IDEA) for speech dereverberation. The IDEA consists of offline and online phases. In the offline phase, we train multiple dereverberation models, each aiming to precisely dereverb speech signals in a particular acoustic environment; then a unified fusion function is estimated that aims to integrate the information of multiple dereverberation models. In the online phase, an input utterance is first processed by each of the dereverberation models. The outputs of all models are integrated accordingly to generate the final anechoic signal. We evaluated the IDEA on designed acoustic environments, including both matched and mismatched conditions of the training and testing data. Experimental results confirm that the proposed IDEA outperforms single deep-neural-network-based dereverberation model with the same model architecture and training data.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
Ministry of Science and Technology of Taiwan[MOST 107-2633-E-002-001]
WOS研究方向
Acoustics ; Engineering
WOS类目
Acoustics ; Engineering, Electrical & Electronic
WOS记录号
WOS:000446384605125
EI入藏号
20184005907190
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8462662
引用统计
被引频次[WOS]:11
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/24712
专题工学院_电子与电气工程系
作者单位
1.Acad Sinica, Res Ctr Informat Technol Innovat, Taipei, Taiwan
2.Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen, Peoples R China
3.Natl Inst Informat & Commun Technol, Tokyo, Japan
4.Natl Taiwan Univ, Dept Elect Engn, Taipei, Taiwan
推荐引用方式
GB/T 7714
Lee, Wei-Jen,Wang, Syu-Siang,Chen, Fei,et al. SPEECH DEREVERBERATION BASED ON INTEGRATED DEEP AND ENSEMBLE LEARNING ALGORITHM[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2018:5454-5458.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lee, Wei-Jen]的文章
[Wang, Syu-Siang]的文章
[Chen, Fei]的文章
百度学术
百度学术中相似的文章
[Lee, Wei-Jen]的文章
[Wang, Syu-Siang]的文章
[Chen, Fei]的文章
必应学术
必应学术中相似的文章
[Lee, Wei-Jen]的文章
[Wang, Syu-Siang]的文章
[Chen, Fei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。