中文版 | English
题名

Knowledge-based Particle Swarm Optimization for PID Controller Tuning

作者
通讯作者Yao, Xin
DOI
发表日期
2017
会议名称
2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION
ISBN
978-1-5090-4602-7
会议录名称
页码
1819-1826
会议日期
5-8 June 2017
会议地点
Donostia-San Sebastian, Spain
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

A proportional-integral-derivative (PID) controller is a control loop feedback mechanism widely employed in industrial control systems. The parameters tuning is a sticking point, having a great effect on the control performance of a PID system. There is no perfect rule for designing controllers, and finding an initial good guess for the parameters of a well-performing controller is difficult. In this paper, we develop a knowledge-based particle swarm optimization by incorporating the dynamic response information of PID into the optimizer. Prior knowledge not only empowers the particle swarm optimization algorithm to quickly identify the promising regions, but also helps the proposed algorithm to increase the solution precision in the limited running time. To benchmark the performance of the proposed algorithm, an electric pump drive and an automatic voltage regulator system are selected from industrial applications. The simulation results indicate that the proposed algorithm with a newly proposed performance index has a significant performance on both test cases and outperforms other algorithms in terms of overshoot, steady state error, and settling time.

关键词
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
EPSRC[EP/K001523/1]
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology
WOS类目
Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology
WOS记录号
WOS:000426929700235
EI入藏号
20173604108788
EI主题词
Benchmarking ; Knowledge Based Systems ; Particle Swarm Optimization (Pso) ; Proportional Control Systems ; Three Term Control Systems ; Tuning ; Two Term Control Systems ; Voltage Regulators
EI分类号
Computer Software, Data HAndling And Applications:723 ; Expert Systems:723.4.1 ; Control Systems:731.1 ; Control Equipment:732.1
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7969522
引用统计
被引频次[WOS]:12
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/24766
专题工学院_计算机科学与工程系
作者单位
1.Hohai Univ, Coll IOT Engn, Changzhou, Peoples R China
2.Univ Birmingham, Sch Comp Sci, Birmingham, W Midlands, England
3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Chen, Junfeng,Omidvar, Mohammad Nabi,Azad, Morteza,et al. Knowledge-based Particle Swarm Optimization for PID Controller Tuning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2017:1819-1826.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
10.1109@CEC.2017.796(366KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Junfeng]的文章
[Omidvar, Mohammad Nabi]的文章
[Azad, Morteza]的文章
百度学术
百度学术中相似的文章
[Chen, Junfeng]的文章
[Omidvar, Mohammad Nabi]的文章
[Azad, Morteza]的文章
必应学术
必应学术中相似的文章
[Chen, Junfeng]的文章
[Omidvar, Mohammad Nabi]的文章
[Azad, Morteza]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。