题名 | Knowledge-based Particle Swarm Optimization for PID Controller Tuning |
作者 | |
通讯作者 | Yao, Xin |
DOI | |
发表日期 | 2017
|
会议名称 | 2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION
|
ISBN | 978-1-5090-4602-7
|
会议录名称 | |
页码 | 1819-1826
|
会议日期 | 5-8 June 2017
|
会议地点 | Donostia-San Sebastian, Spain
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | A proportional-integral-derivative (PID) controller is a control loop feedback mechanism widely employed in industrial control systems. The parameters tuning is a sticking point, having a great effect on the control performance of a PID system. There is no perfect rule for designing controllers, and finding an initial good guess for the parameters of a well-performing controller is difficult. In this paper, we develop a knowledge-based particle swarm optimization by incorporating the dynamic response information of PID into the optimizer. Prior knowledge not only empowers the particle swarm optimization algorithm to quickly identify the promising regions, but also helps the proposed algorithm to increase the solution precision in the limited running time. To benchmark the performance of the proposed algorithm, an electric pump drive and an automatic voltage regulator system are selected from industrial applications. The simulation results indicate that the proposed algorithm with a newly proposed performance index has a significant performance on both test cases and outperforms other algorithms in terms of overshoot, steady state error, and settling time. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | EPSRC[EP/K001523/1]
|
WOS研究方向 | Computer Science
; Engineering
; Mathematical & Computational Biology
|
WOS类目 | Computer Science, Interdisciplinary Applications
; Engineering, Electrical & Electronic
; Mathematical & Computational Biology
|
WOS记录号 | WOS:000426929700235
|
EI入藏号 | 20173604108788
|
EI主题词 | Benchmarking
; Knowledge Based Systems
; Particle Swarm Optimization (Pso)
; Proportional Control Systems
; Three Term Control Systems
; Tuning
; Two Term Control Systems
; Voltage Regulators
|
EI分类号 | Computer Software, Data HAndling And Applications:723
; Expert Systems:723.4.1
; Control Systems:731.1
; Control Equipment:732.1
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7969522 |
引用统计 |
被引频次[WOS]:12
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/24766 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Hohai Univ, Coll IOT Engn, Changzhou, Peoples R China 2.Univ Birmingham, Sch Comp Sci, Birmingham, W Midlands, England 3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China |
通讯作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Chen, Junfeng,Omidvar, Mohammad Nabi,Azad, Morteza,et al. Knowledge-based Particle Swarm Optimization for PID Controller Tuning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2017:1819-1826.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
10.1109@CEC.2017.796(366KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论